基于石墨烯基复合吸波材料的构筑及其研究进展

    朱孟辉 谭琳 冯辉霞

    摘 ? ? ?要:综述了石墨烯基复合吸波材料的构筑及其应用研究进展。详细论述了石墨烯与导电聚合物、磁性纳米粒子等材料复合后的构效关系。并介绍目前石墨烯基复合吸波材料的合成、结构与性质研究进展,对其在吸波方面的应用前景进行展望。

    关 ?键 ?词:石墨烯;电磁污染;复合材料;聚合物;磁性纳米粒子

    中图分类号:TQ 201 ? ? ? 文献标识码: A ? ? ? 文章編号: 1671-0460(2020)02-0373-04

    Abstract: The progress in the construction and application of graphene-based composite wave-absorbing materials was reviewed. And the structure-activity relationship between graphene and conductive polymer, magnetic nanoparticles was introduced in detail. The research progress in synthesis, structure and properties of graphene-based composite wave-absorbing materials was discussed. The application prospect of graphene-based composite wave-absorbing materials was analyzed.

    Key words: Graphene; Electromagnetic pollution; Composite material; Polymer; Magnetic nanoparticles

    石墨烯具有超高比表面积、低密度、高稳定性和优良可加工性等特点,被视为制备理想的“高、薄、宽、轻、强”型微波吸收材料之一。然而,将石墨烯直接用于微波吸收,由于其超高的电子迁移率(~10 000 cm2·V-1·s-1)导致高反射率(降低了阻抗匹配特性),吸波性能并不理想[1]。另外,由于π-π堆积的团聚作用,使得石墨烯本身分散性极差,这也严重影响了相应复合材料的整体性能[2]。

    目前对石墨烯在吸波方面的研究主要集中在通过控制石墨烯基复合材料电导率的同时增大偶极极化和界面极化,以达到阻抗匹配,增加介电损耗。主要方法包括与磁损耗型吸波材料[3]、导电聚合物[4]等材料的复合,以及自身的改性处理上。此外,构建多孔3D结构[5],增加电磁波在材料内部的多次反射也不失为一种行之有效的处理手段。本文介绍了近几年石墨烯基吸波材料的研究进展,并提出展望。

    1 ?与其他介电、磁性材料复合

    1.1 ?与磁性纳米粒子复合

    石墨烯与磁性铁氧体复合,可以降低其整体相对介电常数(εr),而其本身的磁性又可以增加材料的整体磁导率(μr),在很大程度上促使其接近完全阻抗匹配所需的条件(εr = μr),以确保入射电磁波能最大限度地进入材料内部完成吸收损耗,不失为是一种常见有效的手段。

    Yin等[6]通过简单的溶剂热法制备RGO/γ-Fe2O3复合材料,该材料在X波段具有超强的介电损耗能力。研究发现γ-Fe2O3的加入增加了界面间的相互作用加强了界面极化,有效地改善了石墨烯的电磁参数,降低入射电磁波反射率,增强微波吸收,拓宽有效吸收频带宽,使石墨烯具有良好的吸波性能,在吸波涂层厚度2.5 mm时,在10.09 GHz处最低反射损耗-59.65 dB。

    Peng等[7]采用简单、快速的微波辅助法制备了RGO/Co0.33Ni0.33Mn0.33Fe2O4二元复合材料。结果表明,当填充率为20%(wt)涂层厚度2.3 mm时,最低反射损耗-24.29dB,有效吸收频带宽8.48GHz(9.52~18GHz)。与纯石墨烯和Co0.33Ni0.33 Mn0.33Fe2O4纳米粒子相比,纳米复合材料表现出更好的电磁波吸收能力,这主要是因为介电损耗和磁损耗的协同效应,以及良好的阻抗匹配。Liu等[8]通过溶胶-凝胶自蔓延法制备Co0.2Ni0.4 Zn0.4Fe2O4(CNZF),热还原法制备RGO,研究了CNZF/RGO单层和双层复合材料的吸波性能。30%(wt)的CNZF为复合材料的匹配层,30%的RGO为复合材料的吸收层,总厚度2.5 mm的双层吸波材料,在16.9 GHz处,最大反射损耗-49.5 dB。-10 dB以下的吸收频带宽6 GHz。双层吸波材料吸波性能的提高归因于CNZF层的阻抗匹配特性和RGO层的介电损耗能力。

    1.2 ?与导电聚合物复合

    由于石墨烯电导过高,造成高反射,吸波性能差,人们致力于复合低介电的高分子聚合物来调节。与导电聚合物复合,其总体吸收性能主要来自介电损耗。石墨烯与聚合物的协同作用可以大大促进其整体介电损耗的增加,再加上石墨烯的层状结构可以高效的提高其内部多重反射,从而可以更加有效地提高其整体吸收性能。

    Li等[9]采用简单的一步还原自组装工艺制备石墨烯/聚吡咯(GPA)复合材料,聚吡咯纳米棒(PNRs)不仅可以避免石墨烯片堆叠,提高机械强度还能调节GPA的介电常数,相比于石墨烯微波吸收性能得到改善。当匹配厚度3 mm时,在6.4 GHz处最大反射损耗-51.12 dB,低于-10 dB的吸收频带宽5.88 GHz(10.48~16.36 GHz)。Chen等[10]采用原位插层聚合法一步合成石墨烯/聚苯胺(EG/PANI)复合材料,通过改变EG与PANI的质量比得到系列EG/PANI复合材料。并研究了不同导电性下复合材料的吸波性能。随着EG量的增加导电性呈现出先减小后增加的趋势,复合材料在吸波厚度3.5 mm时,10.3 GHz处最大反射损耗-36.9 dB,有效吸收频带宽5.3 GHz(8.2~13.5 GHz),与纯石墨烯相比吸波性能得到显著提高。

    Yan等[11]以氨基化石墨烯(AFG)为基底通过原位聚合法合成了聚苯胺纳米棒/石墨烯(PANI-AFG)复合材料。利用矢量网络分析仪测试了复合材料的吸波性能,当匹配厚度2.5 mm时,在11.2 GHz处最大反射损耗-51.5 dB,低于-10 dB的吸收频带宽4 GHz。Liu等[12]采用原位聚合法和水热法制备了石墨烯/聚噻吩(GN/PEDOT)复合材料,涂层厚度2.5 mm时,在6.9 GHz处最大反射损耗-13.4 dB。Zhag等[13]采用简单的热成型技术,以聚偏氟乙烯(PVDF)和氧化石墨烯(RGO)为原料制备RGO/PVDF复合材料。通过GO表面的含氧官能团与PVDF中的氟基团之间的相互作用。使GO均匀的分散到PVDF中,经过热压工艺将GO还原为RGO。测试结果表明,当填充量为3%(wt)时,RGO/PVDF复材料在10.8 GHz处的最大反射损耗-25.6 dB,低于-10 dB的吸收频带宽4.32 GHz。

    1.3 ?与过渡金属硫氧化合物复合

    与CoS、CuS、MoS2、ZnO等硫氧化合物复合,通过牺牲石墨烯部分电导来增强吸波效能,也是近几年比较常见的方法。

    Yuan等[14]等通过简单溶液剂热法合成了CoS-RGO复合材料,在石蜡基体中加入20%(wt)的复合材料,系统的研究了负载质量、涂层厚度和CoS的用量对吸波性能的影响,当厚度2 mm时,在6.8 GHz处最大反射损耗-54.2 dB,有效吸收带宽4 GHz,当匹配厚度4 mm,低于-10 dB的吸收频带宽13.6 GHz(4.4-18 GHz)。Zhang等[15]在温和的湿化学条件下,采用原位生长法成功的制备了RGO/CuS纳米复合材料,CuS纳米球均匀的嵌入石墨烯片层中间,形成了独特的核-壳纳米结构,匹配厚度2.5 mm时最低反射损耗-32.7 dB。Zhang等[16]采用还原氧化石墨烯(RGO)和四角状ZnO(T-ZnO)混合制备了一种新型的微波吸收材料,在2~18 GHz范围内研究了RGO质量分数和复合材料厚度对微波吸收性能的影响。电磁参数表明,RGO-ZnO复合材料主要依赖介电损耗。5%(wt)RGO和10% T-ZnO的复合材料厚度2.9 mm时,在14.43 GHz处最佳反射损耗-59.5 dB。

    Wang等[17]首次制备了RGO/MoS2复合材料研究了其吸波性能,RGO/MoS2在较薄的厚度和较低的填料下具有较高的吸收效率和较宽的吸收带,在涂层厚度小于2 mm时,在11.68 GHz处最大反射损耗-50.9 dB。Liu等[18]通过阴离子交换反应在超长氮掺杂碳纳米管上生长MoS2纳米薄膜,形成三维分层结构,制备的混合纳米管长度约100 μm,其中MoS2纳米片的厚度小于7.5 nm。在2.5 mm厚度下表现出良好的电磁波衰减性能,最大反射损耗-38.8 dB,低于-10 dB的吸收频带宽5.4 GHz,研究结果表明碳纳米管表面直接生长MoS2是提高电磁波衰减常数的关键因素。

    1.4 ?与其他材料

    Ding等[19]采用超声过滤法,将PVP处理的多壁碳纳米管([email protected])和石墨烯纳米片(GNPs)相结合得到[email protected]/GNPs复合材料。研究了材料在8.2~12.4 GHz频率范围内的吸波性能。涂层厚度2 mm时,在11.29 GHz处的最大反射损耗-26.5 dB,低于-10 dB的吸收频带宽1.6 GHz。由于将[email protected]均匀的嵌入GNPs片层内,使[email protected]/GNPs杂化材料具有最佳分散性,电子转移效率显著提高。

    Jiang等[20]通过氧化石墨烯涂覆SiC晶须浆料的定向凝固和[email protected]气凝胶的热还原制备轻质海绵状的RGO/SiC。由于石墨烯包裹SiC晶须形成了独特的有序结构,这种特殊结构具有密度低,微波吸收性能强等优点。在涂层厚度3 mm时,在10.52 GHz处最大反射损耗-47.3 dB。低于-10 dB的吸收频带宽4.7 GHz。

    1.5 ?构筑三元/四元复合材料

    通过同时加入介电和磁损耗材料,可以使得电磁特性最优化,让吸波材料具备更宽更强的吸收能力。目前更多的工作,是将石墨烯同时与介电材料和磁性材料复合,制备三元甚至四元体系,从而得到性能更加优异的吸波材料。

    Liu等[21]采用原位聚合法、共沉淀法和两步法分别制备了GN/PEDOT、GN/Fe3O4和GN/PEDOT/ Fe3O4三种复合材料。GN/PEDOT復合材料在涂层厚度2.5 mm时,在6.9 GHz处最大反射损耗-13.4 dB,低于-10 dB的吸收频带宽2 GHz(8.5~10.5 GHz);GN/Fe3O4复合材料在涂层厚度2 mm时,在13.6 GHz处最大反射损耗-18.9 GHz;GN/PEDOT/Fe3O4三元复合材料的吸波能力得到显著提高,涂层厚度2.9 mm时,在8.9 GHz处最大反射损耗-56.5 dB,低于-10 dB的吸收频带宽3 GHz。

    He等[22]通过湿化学法和热压法合成了聚偏氟乙烯(PVDF)、聚偏氟乙烯/钡铁氧体(PVDF-BFO)和聚偏氟乙烯/钡铁氧体/还原氧化石墨烯(PVDF- BFO-RGO)复合材料。测试结果表明PVDF几乎没有反射损耗;PVDF/BFO在11~16 GHz中最大反射损耗-10 dB;PVDF-BFO-RGO三元复合材料吸波效果最佳,涂层厚度2 mm时,在11 GHz处最大反射损耗-32 dB,低于-20 dB的吸收频带宽3.2 GHz (9.6~ 12.8 GHz)。

    Wang等[23]通过水热法和化学氧化聚合法,成功的制备了由WO3修饰的[email protected]@PANI四元复合材料,Fe3O4和WO3的纳米粒子的平均粒径分别为300~500 nm和50~150 nm,均匀的分布在[email protected]层间,[email protected]@[email protected]的吸波性能比[email protected]、[email protected]@PANI,有显著提高,涂层厚度4 mm时最大反射损耗-46.7 dB,1.5 mm时低于-10 dB的吸收频带宽1.8 GHz。

    [6]Kong L, Yin X W. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters[J]. Journal of Materials Chemistry C, 2013, 117: 19701-19711.

    [7]Peng J H, Peng Z W, Zhu Z P, et al. Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave-assisted polyol method[J].Ceramics International, 2018, 17(24): 21015-21026.

    [8]Liu P J, Yao Z J, Ng V M H, et al. Enhanced Microwave Absorption Properties of Double-Layer Absorbers Based on Spherical NiO and Co0.2Ni0.4Zn0.4Fe2O4 Ferrite Composites[J]. ActaMetallurgicaSinica (English Letters), 2017, 31(2):1-9.

    [9]Liu B,Li J H,Wang L F,et al. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrolenano-rods and its improved microwave absorption properties[J]. Composites Part A:Applied Science and Manufacturing,2017,97:141-150.

    [10]Chen X G, Meng F C, Zhou Z W, et al. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties[J]. Nanoscale, 2014, 6(14): 8140-8148.

    [11]Yan J, Huang Y, Wei C, et al. Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials[J]. Composites Part A: Applied Science and Manufacturing, 2017, 99: 121-128.

    [12]Liu P B, Huang Y, Zhang X. Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene/poly (3,4-ethylenedioxythiophene) hybrid materials with Fe3O4 nanoparticles[J]. ACS Applied Materials & interfaces, 2013, 5(23): 12355-12360.

    [13]Zhang X J,Wang G S,Cao W Q,et al. Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties[J]. RSC Advances,2014,4(38):19594-19601.

    [14]Huang T, He M, Zhou Y, et al. Solvothermal fabrication of CoS nanoparticles anchored on reduced graphene oxide for high- performance microwave absorption[J]. Synthetic Metals, 2017, 224: 46-55.

    [15]Zhang X J, Wang G S, Wei Y Z, et al. Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride[J]. Journal of Materials Chemistry A, 2013, 1(39): 12115-12122.

    [16]Zhang L, Zhang X, Zhang G, et al. Investigation on the optimization,design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites[J]. RSC Advances, 2015, 5(14): 10197-10203.

    [17]Wang Y F, Chen D L, Yin X, et al. Hybridof MoS2 and Reduced Graphene Oxide:A Lightweight and BroadbandElectromagnetic Wave Absorber[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26226-26234.

    [18]Liu L, Zhang S, Yan F, et al. Three-dimensional Hierarchical MoS2Nanosheets/Ultralong N-doped Carbon Nanotubes as High-Performance Electromagnetic Wave Absorbing Material[J]. ACS Applied Materials & Interfaces,2018,10(16): 14108-14115.

    [19]Ding L C, Zhang A B, Lu H L, et al. Enhanced microwave absorbing properties of [email protected] carbon nanotubes/graphene three-dimensional hybrids[J]. RSC Advance, 2015, 5: 83953-83959.

    [20]Jiang Y, Chen Y, Liu Y J, et al. Lightweight spongy bone-like [email protected] aerogel composites for high-performance microwave absorption[J]. Chemical Engineering Journal, 2017, 377: 522-531.

    [21]Liu P, Huang Y, Zhang X. Synthesis,characterization and excellent electromagnetic wave absorption properties of graphene/poly (3,4-ethylenedioxythiophene) hybrid materials with Fe3O4, nanoparticles[J]. Journal of Alloys & Compounds, 2014, 617: 511-517.

    [22]He H,Luo F,Qian N,et al. Improved microwave absorption and electromagnetic properties of BaFe12O19-Poly(vinylidene fluoride) composites by incorporating reduced graphene oxides[J]. Journal of Applied Physics,2015,117(8):85502.

    [23]Wang Y, Wu X, Zhang W, et al. 3D heterostructure of graphene @[email protected]@PANI:Preparation and excellent microwave absorption performance[J]. Synthetic Metals, 2017, 231:7-14.

    [24]Zhang H, Hong M, Chen P, et al. 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: synthesis, characterization and their electromagnetic wave absorption properties[J]. Journal of Alloys & Compounds, 2016, 665: 381-387.

    [25]Chen Y, Zhang A, Ding L, et al. A three-dimensional absorber hybrid with polar oxygen functional groups of MWNTs/graphene with enhanced microwave absorbing properties[J]. Composites Part B Engineering, 2016, 108: 386-392.

    [26]Zhao T,Ji X,Jin W,et al. Direct in situ synthesis of a 3D interlinked amorphous carbon nanotube/graphene/BaFe12O19 composite and its electromagnetic wave absorbing properties [J]. RSC Advances,2017,7(26):15903-15910.

    [27]Zhang H, Hong M, Chen P, et al. 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels:Synthesis, characterization and their electromagnetic wave absorption properties[J]. Journal of Alloys & Compounds, 2016, 665: 381-387.

    [28]Feng J, Pu F Z, Li Z X, et al. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber[J]. Carbon, 2016, 104:214-225.

    [29]Sudeep P M, Vinayasree S, Mohanan P, et al. Fluorinated graphene oxide for enhanced S and X-band microwave absorption[J]. Applied Physics Letters, 2015, 106: 61301-212.