网站首页  词典首页

请输入您要查询的论文:

 

标题 大数据会计与财务信息相关性研究
范文

    何冰

    【摘 要】 目前大数据会计正逐步进入人们的视野,引起会计学界重视,要想实现大数据会计时代,必须厘清大数据会计的数据选择与结构。文章逐一对会计数据结构及如何在非结构化、碎片式数据和企业价值三者之间建立相关关系进行分析,并就应对大数据给会计带来的挑战提出了建议。

    【关键词】 大数据; 会计数据; 碎片式数据; 非结构化数据; 财务信息

    【中图分类号】 F232 【文献标识码】 A 【文章编号】 1004-5937(2017)07-0130-04

    一、大数据会计的数据选择与结构分析

    在计算机信息技术空前发展的当下,人力资源、金融资本及大数据被公认为未来信息化社会的三大核心生产要素。生产要素的改变必然改变人类生活的各个方面,财务行业也将受到必不可少的影响。传统财务行业的数据收集处理及分析模式将因大数据而发生积极改变,各种会计信息质量,比如可靠性、可比性、重要性等,都将会受到积极影响。会计从诞生的那一刻起就是为企业价值服务的,编制有效的会计信息的目的不仅仅是为了服务管理层、投资者和潜在的需求者,其最终的目的是为了在真实、准确反映企业有效信息的基础上服务于企业价值的提高。

    从此角度来说,凡是能夠提高企业价值的相关数据信息,都是广义的会计信息。大数据时代,传统会计不能融入的各种非结构化甚至碎片化的数据,需要被纳入大数据会计信息系统,以服务于企业的发展,用于提升企业价值。大数据时代,对企业具有价值的各种非系统、碎片式的数据如何有效收集处理纳入会计信息系统并创建新的会计数据信息系统,为企业的管理者或信息的预期使用者提供更有价值,更可靠准确的数据以便于其作出各种经济决策,将是未来会计数据信息系统建设的首要难题。

    (一)思维转变将有效补充传统会计定性信息数据的不足

    因果导向的思维模式作为传统的思维模式占据人类历史几千年,而在大数据时代此种思维或将面临改变。大数据时代,海量的数据尤其非结构化、非系统性、碎片式数据占据主导,将使得因果性思维陷入英雄无用武之地。大数据的“大量、多样、高速、价值”4V特征给人们传递了新的信息,也带来新的思维模式。该思维涵盖了“平等、动态、多样、关联、开放”等特征,蕴含了集合优于单一、整体优于局部、相关优于因果等思想。正是这种新思维新特征,改变了人们传统的因果性思维,逐渐转变成大数据时代的整体性、相关性思维。

    大数据时代单一的各种碎片式或非结构化的信息数据并不能真实准确反映企业的完整经营过程,但是整合大量相关的碎片式数据将能够有效反映相关的企业价值所在。传统会计实务当中以货币作为主要计量单位的定量描述原因有二:其一,货币计量不能用来反映定性描述的数据信息;其二,定性描述的数据信息大多是利用相关关系衍推而来,结果随机性较大且不如因果导向所得结果准确。深入考虑,传统会计选择定量的数据用来核算反映企业相关信息主要是其时代局限性所决定的。大数据时代,碎片式或非结构化的会计数据不再受以前因果分析的局限性,可以利用整体或较大样本的数据进行相关性分析,所得结果准确性往往较传统的因果性分析更为准确、恰当。综合来说,传统会计数据信息仅涵盖货币计量的定量描述性的数据将远远不足,大数据时代各种定性描述的碎片式或非结构化的数据将有效补充传统会计数据的不足。

    (二)碎片式或非结构化的数据组成传统会计数据部分的逻辑分析

    碎片式或者非结构化的数据主要指不能或不方便用传统二维数据库来计量的数据,比如视频信息、图片信息等。大数据时代,各种碎片式或非结构化的数据虽有效补充了传统会计数据的不足,但只有特定特征的碎片式或非结构化的数据才可以纳入传统会计数据体系,并不意味着所有此类数据均需纳入。

    首先,只有具备一定价值和数据密度的特殊碎片式或非结构化数据才可以纳入传统会计数据体系。此类数据在大数据分析时将会有效降低各种噪音与干扰。此类数据需要与真实事件具有高度相关性,真实准确地反映事件或事件影射现象,只有这样的数据纳入才会有效地提高会计信息的质量。其次,此类数据还需要具备中立性。所谓中立性,指碎片式或非结构化的数据需要客观不带主观性地去反映各种真实事件或其影射现象,只有客观中立的碎片式或非结构化数据纳入才能防止人为主观带来的错误。因此,纳入传统会计数据体系的碎片式或非结构化的数据需要具备中立客观且具有价值。

    会计信息自始至终为企业管理而服务,故会计数据可以说依附在企业管理之下,那么如何选择会计数据将与企业的本质密不可分。

    针对企业本质主流观点如下:(1)制度经济学家科斯认为企业的本质是一种资源配置方式的产物,是价格机制的替代者;(2)契约论者认为企业本质是代理人与各种要素投入者签订契约而成立的某种契约组织;(3)某些学者认为企业存在的本质是创造并追求利润最大化。对比三种主流企业本质的相关流派,发现他们并不冲突反而相互补充,笔者偏向于三种观点的融会贯通。可以说企业本质是契约代理人与要素投资人的组合,是企业成立的前提,企业是市场资源配置的均衡产物,而企业最终的目的是为投资人创造价值并与其分享,即企业本质是创造价值并分享、资源配置及契约关系三位一体的综合体。企业本质的资源配置及契约关系可以通过会计核算经营过程中的数据信息来描述,而创造价值与分析则可以通过记录契约关系资源配置的具体信息来衡量。可见,会计数据信息必须能够衡量企业价值,这也是会计对象的基本范畴(会计对象是企业的资金运动或价值运动)。由此,碎片式的也好,非结构化的也好,纳入传统会计数据体系的首要条件是与企业价值相关。

    (三)大数据时代会计数据体系结构分析

    通过前文阐述可以知晓,独立客观的且与企业价值相关的碎片式或非结构化的数据需被纳入会计数据体系。在此,传统的会计数据与新纳入的碎片式、非结构化数据之间的关系如何,两类数据如何在会计数据体系里定位?

    会计数据从真实可靠角度来说,由直接及间接两类数据构成。传统的会计数据基本由直接的结构化数据组成,而现代纳入的碎片式或非结构化的数据则可归类于间接的会计数据。第一,相对于新纳入的碎片式或非结构化的间接数据,传统会计直接数据能够最为真实可靠地反映经济业务(交易或事项)的本质。这是因为传统结构化的数据在确认、计量、报告的过程中都严格按照会计准则等法律法规规定的流程进行操作,比如相关单据的稽核、复核、审核、签字确认等,这些都有效地提高了数据的可靠性,直接揭露了真实可靠的交易或事项。第二,相对于传统会计的直接结构化数据,新纳入的碎片式或非结构化的间接数据由于其与企业价值高度相关且独立客观,大大提高了现代会计数据体系全面准确反映经济业务本质的可靠性,也进一步提高了会计信息质量。无论什么时代,会计数据体系都必须可靠真实,大数据时代会计数据体系也不例外。换句话说,大数据时代的会计数据体系将以传统结构化(货币作为主要计量单位定量描述的)数据为主,而独立客观且与企业价值相关的碎片式或非结构化的数据成为有效补充。两类数据体系的融合,不仅确保会计信息质量而且提高了会计信息与企业价值的高度相关性。

    传统直接的会计数据收集处理过程涵盖于企业生产经营过程中可能涉及的每个环节或每个部门,数据收集处理相关的成本已经计入职工薪酬,成本無需企业再额外支出。但是,大数据时代纳入的碎片式或非结构化的数据收集、处理成本不仅需要额外支出且相对高昂。当下,大部分国内企业的信息化程度并不高,搭建大数据平台并成功运营的更少之又少。大多数企业若想把各种碎片式或非结构化的数据纳入新的会计数据体系,几乎都需借助外界平台或专业人士来收集与处理,大大增加了企业的成本。考虑将碎片式的、非结构化的数据纳入现代会计数据体系需要较大的成本,则其推进进程或时间周期将大大延长,也就意味着大数据会计数据体系仍旧在很长一段时间以货币定量描述的直接会计数据占主导。

    二、构建企业价值与碎片式或非结构化数据的相关关系

    传统会计数据体系当中各种以货币计量可量化的结构化数据,均与企业价值直接相关,能够通过因果导向直接核算(反映)企业的各项经济业务活动(企业价值)。不过,碎片式或非结构化数据属于间接数据,虽然与企业价值相关或者高度相关,但是很难利用传统因果导向来确认其与企业价值的直接关系。正因如此,对于碎片式或非结构化数据与企业价值的关系需要用相关分析方法来确定,而不是传统的因果导向性分析方法。

    企业估值理论用未来现金净流量的现值之和来评估企业价值,而企业当前会计核算体现的账面价值仅是历史的现金流量,导致企业价值的评估与企业当前的账面价值并不一致。为更全面、真实、可靠地反映企业价值,则需将企业历史和未来的(间接或潜在的)所有与企业价值相关的现金流量纳入。从构成角度来说,历史(已经产生的)现金流量属于企业财务信息,而未来相关的现金流量大多属于非财务信息,目前的会计准则下尚未将此类信息纳入会计数据体系。未来潜在或间接的现金流量可能以结构化数据展现,也可能是碎片式或非结构化数据的体现。为此,要想客观反映企业价值,需要利用未来各种潜在或间接的现金流量与历史(直接)的现金流之间的联系,将未来现金流量(碎片式或非结构化的,又或结构化的)与企业价值建立一种映射或相关关系。

    此处关键问题是如何计算未来这些间接或者潜在的现金流,否则将无法建立碎片式或非结构化数据与企业价值的相关关系。考虑最终需要将这些数据纳入现代会计数据体系,所以相关方法过程简单、易于操作、易于理解是最起码的条件。利用转换方法,可以将未来潜在或间接的现金流转换为企业账面价值,准确适时地反映企业的价值。

    综合前面分析可以得到以下两组公式:

    企业现时账面价值t=投资活动现金流t+经营活动(生产销售)现金流t+筹资活动现金流t (1)

    企业价值t=企业现时账面价值t+企业潜在价值(未来现金流)t (2)

    结合上述式(1)、式(2)可以倒推未来潜在或间接的现金流所带来的价值。

    账面价值t=企业价值t-1=账面价值t-1+企业潜在价值(未来现金流)t-1×转化效率 (3)

    该转换效率可以用含有自变量xn的函数U(x1,x2,x3,…,xn)来表示。在现实企业估值当中,影响转换效率的函数可能无限多。此处为便于运用,假设有三个关键影响因素:x1消费特征、x2人群特征、x3评价结果,则转换效率函数可以表示为U(x1,x2,x3)。

    企业未来现金流大多可能蕴含在各种碎片式或非结构化的或是结构化的非财务信息当中。为了很好地将潜在的现金流中碎片式或非结构化数据与企业价值管理相结合,需通过一定的方法转换为结构化的数据,与结构化的潜在现金流一并核算处理。转换后潜在的或间接的现金流变成全部结构化的数据,可以分为投资、经营、筹资三类活动产生的现金流,最后利用上述含有三个关键变量的转换效率函数将潜在现金流转换为潜在价值。

    各种企业潜在价值当中的碎片式或非结构化数据,主要是人们(企业客户、潜在客户或其他群众)对企业经营活动的评价。企业潜在价值源于评价即意味着两者之间呈正比例关系。不过评价又受到不同群体特征人的不同评价,比如不同消费行为的人对企业价值评价往往有差异。因此,企业潜在价值一会受到评价影响,二会受到不同人群特征的影响。同样,针对人群特征,又可以进一步分类为不同的消费特征,比如高收入人群与低收入人群的购买力将有很大差别,他们的购买行为差异又将对企业潜在价值构成影响。总的来说,可以确定影响企业潜在价值的三个关键因素为人群特征、消费特征以及他们的评价结果。

    从相关性角度来说,企业价值相关信息最大的价值是可比性,即不同企业之间的价值比较。无论对管理层还是其他预期信息使用者,只要能够在不同企业之间利用它们的企业价值作出对比然后得出经济决策,那么这些企业价值的评估都是有效的。也就是说,企业价值评估最关键的是不同企业之间的可比性,而不是最为精确无误地核算企业的账面价值和潜在价值。因此,笔者对所有企业都选择上述三个特征作关键变量来衡量企业潜在价值是有实际意义的。

    三、大数据给会计带来的挑战

    (一)更为全面及可靠的会计信息得以实现

    对于传统会计数据体系,财务报告中所涵盖的信息大多数是结构化的数据信息,这样的财务报告随着大数据时代的到来越来越难以满足财报预期使用者的真实需求。为适应大数据时代,企业财报若将各种碎片式或非结构化数据纳入,将能够有效弥补传统财务报告的不足。碎片式或非结构化的各种数据纳入报表将配合传统财务会计报告综合全面反映企业财务状况、经营成果以及企业所处社会环境、产业环境、商业环境等各种有价值的信息。因此,当务之急是需要相关机构及时开发出能将各种碎片式或非结构化数据结构化、量化的工具,从而帮助其纳入传统财务报表。

    传统财务报告纳入项目的扩展,使得传统意义上不能量化的非结构化的或者碎片式的数据均进入了会计信息系统,比如企业的环境状况、人力资本等。当然,在现实工作中,会计实务人员还需要对企业的经营模式进行量化,将在会计报表附注中以文字描述的方式转变为量化的方式,使得更多信息使用者获取有用的量化信息,使得会计信息透明度增加[ 1 ]。

    (二)平台搭建及相关标准构建

    在大数据时代,企业以前为财务工作所搭建的会计信息系统平台将逐渐淘汰,所涵盖的内部会计资源和组织协同发展的相关信息都将失去价值。故要适应大数据时代,需建立一个高度信息化的共享平台,该平台包括企业和其产业链上下游的供应商及客户,还包括企业各种相关的合作伙伴(包括税务等在内的政府机构)。该平台由中央政府牵头,组建涵盖上下依次为中央政府、地方政府及企业的三层会计信息系统平台。通过分层可以明确不同分工以及不同边界,这样可以实现协同化效应,实现信息共享,最大程度地满足所有会计信息相关使用者的需求。在信息共享平台建立的同时,需要建立平台信息收集、输入、存储、输出等各种标准。正常情况下,由处在平台最高层的中央政府来统一制定,然后由地方政府及企业执行,实现相关会计信息的标准化。

    对于信息平台的构架及标准的制定,考虑其投入的人力物力都相对比较大,一般需要由政府牵头完成。对于该会计信息共享平台,除全面反映各种会计信息之外还要有相关验证和审核信息的功能。考虑目前大数据时代该平台尚处于试验阶段,所以笔者建议相关部门可以试点的方式进行推广。当然,平台建设与标准制定都是一个试错摸索过程,需要时间周期和不断调整[ 2 ]。

    (三)核算型向价值型财务体系转变

    大数据时代下的信息管理需要升级,要求企业相关部门,尤其管理层及会计部门要从提高业绩管理水平和风险管理能力的角度积极改变传统会计信息系统,实现财务信息从传统的核算型向价值型的转变。企业可考虑如下三点展开此项工作:其一,企业运营过程中,需要在扁平化的管理结构中恰当处理财务管理与运营管理两者之间的关系。同样,价值型(价值导向或者价值提升)的财务系统中,相关财务工作者需要将其工作从传统的基础财务工作转变为价值创造,将其定位为企业变革型关键人员。其二,业务销售方面,企业应考虑重组客户资金流程,实现资源最优配置,尽可能地发挥财务协同效应。其三,在战略创新方面对企业财管模式全面创新升级,利用价值管理等先进管理经验为企业战略管理提供帮助,将产业价值链和商业模式等管理知识充分运用到企业整体战略中。

    四、结论建议

    会计作为对企业价值相关数据进行管理的一项活动,在大数据时代,需要全面改革传统会计数据体系及财务报告体系。为适应大数据时代,会计管理工作要与时俱进,作出各种改变,笔者认为可围绕以下几点展开:

    第一,与传统会计数据要求一致,但需要重新制定统一的标准以满足不同企业之间在大数据时代会计工作成果的可比性。类似于现行的企业会计准则,该项标准需要由政府相关权力或行政机关统一制定,全国推行并强制使用。

    第二,针对大数据时代的各种碎片式或非结构化数据,其与企业价值之间的关系,笔者在本文稍有抛“砖”,仍需大量“玉”来配合。这项工作或由相关政府部门、学术界融入实务环境中,深入研究,建立标准的分析模型。

    第三,财务会计报告的重新变型。大数据时代,需要将各种碎片式或非结构化的数据信息纳入财务会计报告以全面反映企业的财务状况、经营成果以及相关环境信息。为此,大數据财务报告需要适当分层,以传统货币计量的数据为核心,辅助以碎片式或非结构化数据。

    第四,中央及地方政府牵头协助信息化较高的规模企业事先建立大数据会计信息共享平台,扶持企业利用大数据信息来创造价值,为供给侧改革提供技术与信息化手段。

    【主要参考文献】

    [1] 冯芷艳,郭迅华,曾大军,等.大数据背景下商务管理研究若干前沿课题[J].管理科学学报,2013(1):1-9.

    [2] 李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012(6):647-656.

随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/6/23 10:55:38