施肥对水曲柳林木叶片SPAD值的影响

    张亚伟 孙海龙 郑鸿权 卫月华

    

    

    

    摘 要:为探究施肥对水曲柳林木叶片光合特性的影响,以10年生水曲柳人工林为对象,测定氮磷施肥处理下水曲柳林木叶片的SPAD值、叶绿素含量和氮含量。结果表明,较高N肥及NP肥混施处理能够显著提高水曲柳林木叶片SPAD值、叶绿素含量和氮含量,而单施P肥对各指标的影响较小,但是P肥与N肥混施处理后叶片各指标显著提高,不同施肥处理最大值出现在N2P1处理;不同施肥处理下水曲柳叶片SPAD值与叶绿素和氮含量的变化趋势相似,且均显著相关,其中叶片SPAD值与单位干重叶绿素各组分含量的相关系数在单施P肥处理下最高,而叶片SPAD值与单位面积叶绿素各组分含量的相关系数在单施N肥处理下较高;叶片SPAD值与单位面积氮含量相关系数最大值出现在单施N肥处理下,而在单施磷肥处理下SPAD值仅与单位干重氮含量之间相关显著。以上结果表明:施氮磷肥后能够明显改善水曲柳林木叶片光合特征,而且水曲柳叶片SPAD值与叶绿素含量和氮含量紧密相关,是预测不同施肥条件下水曲柳叶片光合特征的有效手段。

    关键词:水曲柳(Fraxinus mandshurica);施肥;SPAD值;叶绿素;叶片氮含量

    中图分类号:S725.5 ? ?文献标识码:A ? 文章编号:1006-8023(2020)05-0034-06

    Abstract:To understand the responses of photosynthetic characteristics to fertilization, the SPAD value, chlorophyll content and nitrogen content of the leaves were measured in a 10-year old Fraxinus mandshurica plantation forest stand with nitrogen and phosphorus fertilization. The results showed that higher N additions and N+P additions significantly increased the SPAD value, chlorophyll content and nitrogen content of the leaves in Fraxinus mandshurica plantation forest stand. However, P fertilization had small influences on them. After mixed P and N fertilization, the leaf indexes increased significantly. The highest of SPAD value, chlorophyll content and nitrogen content were in the N2P1 treatment. SPAD values were significantly correlated with chlorophyll contents and nitrogen contents of leaves, and they showed the similar change in the different fertilization treatments. The correlation coefficients of SPAD values and chlorophyll content per mass were highest in only P addition. While the correlation coefficients of SPAD values and chlorophyll content per area were highest in only N addition. The highest correlation coefficient of SPAD value and nitrogen content per area was under only N addition. There was the only correlation of SPAD value and nitrogen content per mass under only P addition. These results suggested that the addition of N and P fertilization can regulate the photosynthetic characteristics of leaves in Fraxinus mandshurica plantation forest stand. SPAD value generally correlated with chlorophyll content and nitrogen content of leaves significantly. It is an effective method to predict the photosynthetic characteristics of Fraxinus mandshurica leaves under different fertilization conditions.

    Keywords:Fraxinus mandshurica; fertilization; SPAD; chlorophyll; leaf nitrogen conetent

    0 引言

    氮和磷是農林业生产的主要限制元素,通过施肥增加植物氮磷供给能力已成为植物生产力提高的重要手段[1-5]。叶片的叶绿素是植物截获光能的基础,而氮素是叶绿体蛋白的主要成分,两者是叶片通过光合作用合成碳水化合物的基础物质,决定了光合速率的高低[6]。研究表明,氮肥通过提高植物叶片氮含量和叶绿素含量,促进光合作用,而磷肥也能够调节氮向Rubisco(二磷酸核酮糖羧化酶)的分配,以及提高Rubisco的含量和活性进而改变光合速率[7-9]。因此,氮磷添加后叶片叶绿素含量和氮含量的响应一直是植物施肥的重要依据。SPAD便携式叶绿素仪能够通过测量叶片红光(650 nm)和红外光(940 nm)的透射率计算叶绿素指数(SPAD值),目前SPAD值已在多种植物的叶绿素和氮含量测定中得到应用[10-13]。相比于传统的破坏性取样,该方法具有能够重复测定、非破坏性和使用简单的优点,但是该仪器测定的SPAD值与叶绿素和氮素含量之间的相关性受种类、叶龄、比叶重和养分条件等因素影响[14-18]。因此,为准确测定叶绿素和氮含量需要不同种类、立地或试验的检验。

    水曲柳(Fraxinus mandshurica Rupr.)是我国东北地区重要的珍贵用材树种,其人工林的培育研究多集中在立地选择、密度控制和混交林营造等方面[19-23]。由于野外测定条件限制,目前关于水曲柳林分水平光合特征的研究较少[24-25],这就限制了其人工林的培育,因此,利用SPAD值测定水曲柳林木叶绿素和氮含量特征成为一条有效的途径,虽然李改艳[24]已经利用SPAD值建立了十年生水曲柳林木叶片叶绿素含量和SPAD值之间的相关模型,但是氮磷添加后对水曲柳人工林叶片叶绿素和氮含量与SPAD值之间关系的影响还不清楚。因此,本研究通过测定不同氮磷添加下水曲柳人工林的SPAD值、叶绿素含量和氮含量,拟分析:①氮磷添加对水曲柳人工林叶片SPAD值、叶绿素和氮含量的影响;②氮磷添加对水曲柳叶片SPAD值与叶绿素和氮含量之间关系的影响。

    1 研究区概况与研究方法

    1.1 研究地区自然概况

    试验地位于黑龙江省尚志市小九实验林场(127°41′ E, 45°14′ N),属长白山山脉张广才岭西坡,气候类型为大陆性季风气候,春夏秋季较短,冬季漫长寒冷,年均气温2.3 ℃,年均降雨量740 mm,年日照时数2 561 h,无霜期120 d,平均海拔420 m,地带性土壤为暗棕壤,非地带性土壤有白浆土、草甸土和沼泽土,黑土层厚度18~20 cm,地带性植被多为红松针阔混交林采伐后形成的次生林。

    1.2 研究方法

    1.2.1 样地设置和施肥处理

    选取2009年营造的水曲柳人工林为试验林分,株行距为2 m×1.5 m,林分平均胸径6.64 cm,平均树高7.57 m。2018年秋季在林分内选择立地和生长条件相似的地块建立36块试验样地,每块样地大小为20 m×20 m,左右间距4 m,前后间距4.5 m,分别采集各样地0~10 cm与10~20 cm土壤,测定其初始养分含量并汇总(表1和表2)。2019年5月和7月进行施肥处理,其中氮肥包括N1、N2、N3(浓度分别为5、12. 5、20 g/m2),磷肥包括P1、P2(浓度分别为7.5、15 g/m2),以及两者之间的交互处理:N1P1、N1P2、N2P1、N2P2、N3P1、N3P2,还有不施肥的对照,共计12种处理,其中N肥为尿素(含N≥46%),P肥为过磷酸钙(P2O5≥16%),施肥方式为均匀撒施,各样地采取完全随机区组设计施肥,每种处理重复3次。

    1.2.2 样品采集

    2019年8月在每块样地选取3株健康的平均木,利用高枝剪采集林木树冠中部东、西、南、北4个方向的叶片,各方向选取相同数量的健康、完整、成熟叶片测定SPAD值,测定后叶片用于叶绿素测定,同时各方向共取15~20片带回实验室测定叶面积(s)、叶干质量(m)与氮含量。

    1.2.3 样品测定

    在每株标准木树冠中部东、南、西、北4个方向各选取一片枝条尖端完全展开的成熟叶片,利用叶绿素仪(Minolta SPAD-502)测定各叶片主脉左右两侧叶尖、叶中、叶基的6个SPAD值,各叶片的平均值为每株标准木的SPAD值。同时将各叶片放入冷藏箱带回实验室用于叶绿素含量和比叶重测定。将新鲜水曲柳叶片带回实验室后去除叶片中脉及叶缘后将叶片剪碎,利用乙醇-丙酮等体积比混合液浸提后,根据Wellburn[26]的方法在663 nm和645 nm下测定吸光度并计算叶绿素含量。比叶重利用叶面积仪(CI-203,CID)测定鲜叶叶面积后,杀青烘至恒重,称量后计算叶片比叶重(LMA, Leaf Mass per Area)。

    烘干后的叶片样品粉碎后过100目筛,利用硫酸-过氧化氢消化,然后用连续流动分析仪(AA3,SEAL)测定叶片全氮含量。

    1.2.4 数据处理

    各施肥处理水曲柳叶片SPAD值、叶绿素含量和氮含量利用Oneway-anova进行分析,并利用LSD法与Duncan法进行多重比较,利用SPSS 20.0对叶片SPAD值与叶绿素和氮含量进行相关分析。

    2 结果与分析

    2.1 氮磷施肥处理对水曲柳林木叶片SPAD值、叶绿素含量和氮含量的影响

    施肥处理显著影响了水曲柳林木叶片SPAD值、氮含量和叶绿素含量(P<0.05),除了叶绿素b含量最大值出现在N3P1处理外,其余叶片指标最大值均出现在N2P1处理。单施N肥和NP肥混施处理均显著影响了叶片各指标含量(P<0.05),而单施P肥处理仅对叶片氮含量影响显著(P<0.05)(表3)。

    2.2 氮磷施肥下水曲柳林木叶片SPAD值与叶绿素不同组分之间的相关性

    氮磷施肥处理下水曲柳林木叶片SPAD值与叶绿素含量均极显著相关(P<0.01),其中单施P肥处理下叶片SPAD值与单位干重叶绿素各组分含量相关系数最高。除了单施P肥处理,各处理叶片SPAD值與单位面积叶绿素各组分含量的相关系数均高于叶片SPAD值与单位干重叶绿素各组分含量的相关系数,而且各处理叶片SPAD值与叶绿素a的相关系数均高于叶片SPAD值与叶绿素b及总量的相关系数(表4)。

    2.3 氮磷施肥下水曲柳林木叶片SPAD值与叶片氮含量之间的相关性

    氮磷施肥处理下叶片SPAD值与叶片氮含量的相关性表现相同,其中单施N肥和NP肥混施处理下,叶片SPAD值与单位面积N含量的相关系数高于叶片SPAD值与单位干重氮含量的相关系数,而且相关均极显著(P<0.01);单施P肥处理下,叶片SPAD值仅与单位干重N含量的相关性达到显著水平(P<0.05)(表5)。

    3 结论与讨论

    本研究中施肥后水曲柳林木叶片SPAD值的变化与叶片叶绿素含量和氮含量的变化基本一致,除了在低P处理(P1)以及低N低P(N1P1)混施处理略低于对照外,其余施肥处理下叶片SPAD值、叶绿素含量和氮含量均增加,且表现相似趋势,这与前期在水曲柳苗木中的研究结果一致[9,27-28],这表明施肥处理能够通过提高叶片氮素和叶绿素含量,改善林木光合作用,同时施肥处理下水曲柳林木叶片SPAD值的响应能够反映叶片叶绿素含量和氮含量的变化。这一结论与Chen等[29]在杉木(Cunninghamia lanceolata)中的研究相似。本研究也发现P肥添加能够增强N肥的施肥效果,本研究中单施氮肥处理下叶片氮含量和叶绿素含量均在高氮(N3)处理达到最高值,而在中氮(N2)处理下较低,但是中氮处理(N2)与P肥混施后显著提高了叶片SPAD值、氮含量和叶绿素含量,而且达到这些指标的最高值,但是高氮处理(N3)与P肥混施后的影响较小,这些表明中氮(N2)处理下NP肥混施是提高水曲柳林木光合作用较好的处理,对水曲柳林木叶片光合生理的改善效果较好。这与有些研究结果[13,15,24]一致,本研究使用SPAD仪测定的水曲柳林木叶片SPAD值与传统方法测定的叶片叶绿素含量显著相关(表4),因此可以利用叶片SPAD值预测施肥处理下水曲柳林木叶片叶绿素含量。本研究中水曲柳叶片SPAD值与叶绿素含量之间的相关系数为0.512~0.840,低于李改艳[24]研究中得到的相关系数,这表明利用叶片SPAD值预测叶绿素各组分含量具有较大变异,这可能与本研究中相关系数是由不同施肥处理下叶片计算得到相关,这与其他研究发现的叶片SPAD值与叶绿素含量相关性受环境因素影响较大相似[16-18]。另外,本研究中叶片SPAD值与单位面积叶绿素含量之间的相关性高于叶片SPAD值与单位干重叶绿素含量之间的相关性,这表明利用比叶重能够调节叶片SPAD值对叶绿素预测的准确性,这与Peng等[14]发现的利用比叶重能够显著改善水稻叶片SPAD值与叶绿素含量之间的相关性相一致,但是本研究中利用比叶重调节后叶片SPAD值与叶绿素各组分含量之间的相关系数提高幅度较小(1%~6%),而且SPAD值与单位干重叶绿素含量之间的相关性也极显著(表4),因此利用叶片SPAD值与单位干重叶绿素含量之间的相关性估算叶片叶绿素含量情况也是可行的。另外,单施P肥处理下叶片SPAD值与单位干重叶绿素含量之间的相关性高于叶片SPAD值与单位面积叶绿素含量之间的相关性,这也表明施肥条件下叶片SPAD值与单位干重叶绿素含量之间的相关性可以用于水曲柳林木叶绿素含量的预测。

    不同施肥处理下,水曲柳林木叶片SPAD值与叶片氮含量之间的相关性也达到显著水平(表5),这与在高山杜鹃(Rhododendron lapponicum)[30]、米槠(Castanopsis carlessi)[31]等研究中的结果一致。在单施N肥和NP肥混施处理下,利用比叶重可以使叶片SPAD值与氮含量之间的相关系数提高9%~14%,表明叶片SPAD值对氮含量的预测受比叶重影响较大[15],因此可用叶片SPAD值与单位面积氮含量的相关性进行预测。但是在单施P肥处理下,叶片SPAD值仅与单位干重氮含量显著相关,说明P肥添加下比叶重对叶片氮含量的影响降低,因此该处理下使用叶片SPAD值与单位干重氮含量之间的相关性预测叶片氮含量准确性更高。

    以上结果表明,施肥能够显著提高水曲柳林木叶片光合生理特征,其中氮磷肥混施的效果最好;不同施肥处理下水曲柳林木叶片SPAD值与叶绿素含量和氮含量之间密切相关,是预测施肥条件下水曲柳林木光合特征的有效方法。

    【参 考 文 献】

    [1]贾维嘉,蒋伟,刘建,等.不同氮素形态对总状绿绒蒿幼苗生长与光合作用的影响[J].西部林业科学,2019,48(6):72-79.

    JIA W J,JIANG W,LIU J,et al.Effects of different nitrogen forms on growth and photosynthesis of meconopsis racemosa seedlings[J]. Journal of West China Forestry Science, 2019,48(6):72-79.

    [2]FOX T R, LEE H, ALBAUGH T J, et al. Tree nutrition and forest fertilization of pine plantations in the southern United States[J]. Southern Journal of Applied Forestry, 2007, 31(1): 5-11.

    [3]苏俊武,槐可跃,刘永刚,等.不同施肥方式对山地思茅松幼林生长的影响[J].西部林业科学,2019,48(5):37-42.

    SU J W, HUAI K Y, LIU Y G, et al. Effects of different fertilization methodson the growth of Pinus kesiya var. langbianensis young forest in mountainous areas[J]. Journal of West China Forestry Science, 2019, 48(5): 37-42.

    [4]ZHAO D H, KANE M, TESKEY R, et al. Impact of management on nutrients, carbon, and energy in aboveground biomass components of mid-rotation loblolly pine (Pinus taeda L.) plantations[J]. Annals of Forest Science, 2014, 71(8): 843-851.

    [5]李杨涛,孟梦,李莲芳,等.施肥和IBA对思茅松种子发芽和苗木生长的影响[J].西部林业科学,2019,48(3):61-68.

    LI Y T,MENG M,LI L F,et al.Effects of fertilization and IBA on seed germination and seedling growth of Pinus kesiya var. langbianensis[J].Journal of West China Forestry Science,2019,48(3):61-68.

    [6]LAWLOR D W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems[J]. Journal of Experimental Botany, 2002, 53(370): 773-787.

    [7]LAWLOR D W, KONTTURI M, YOUNG A T. Photosynthesis by flag leaves of wheat in relation to protein, Ribulose Bis phosphate carboxylase activity and nitrogen supply[J]. Journal of Experimental Botany, 1989, 40(1): 43-52.

    [8]WARREN C R, ADAMS M A. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster[J]. Tree Physiology, 2002, 22(1): 11-19.

    [9]霍常富, 王政權, 孙海龙, 等. 光照和氮交互作用对水曲柳幼苗生长、生物量和氮分配的影响[J]. 应用生态学报, 2008, 19(8): 1658-1664.

    HUO C F, WANG Z Q, SUN H L, et al. Interactive effects of light intensity and nitrogen supply on Fraxinus mandshurica seedlings growth, biomass, and nitrogen allocation[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1658-1664.

    [10]NEILSEN D, HOGUE E J, NEILSEN G H, et al. Using SPAD-502 values to assess the nitrogen status of apple trees[J]. HortScience, 1995, 30(3): 508-512.

    [11]PINKARD E A, PATEL V, MOHAMMED C. Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter[J]. Forest Ecology and Management, 2006, 223(1): 211-217.

    [12]UDDLING J, GELANG-ALFREDSSON J, PIIKKI K, et al. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings[J]. Photosynthesis Research, 2007, 91(1): 37-46.

    [13]BIELINIS E, JZWIAK W, ROBAKOWSKI P. Modelling of the relationship between the SPAD values and photosynthetic pigments content in Quercus petraea and Prunus serotina leaves[J]. Dendrobiology, 2015, 73: 125-134.

    [14]PENG S B, GARCA F V, LAZA R C, et al. Adjustment for specific leaf weight improves chlorophyll meters estimate of rice leaf nitrogen concentration[J]. Agronomy Journal, 1993, 85(5): 987-990.

    [15]CHANG S X, ROBISON D J. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter[J]. Forest Ecology and Management, 2003, 181(3): 331-338.

    [16]LI J W, YANG J P, FEI P P, et al. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field[J]. Field Crops Research, 2009, 114(3): 426-432.

    [17]MARENCO R A, ANTEZANA-VERA S A, NASCIMENTO H C S. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species[J]. Photosynthetica, 2009, 47(2): 184-190.

    [18]UCHINO H, WATANABE T, RAMU K, et al. Calibrating chlorophyll meter (spad-502) reading by specific leaf area for estimating leaf nitrogen concentration in sweet Sorghum[J]. Journal of Plant Nutrition, 2013, 36(10): 1640-1646.

    [19]谷加存, 楚旭, 王政權. 水曲柳人工林直径生长与培育技术[J]. 东北林业大学学报, 2010, 38(9): 7-9.

    GU J C, CHU X, WANG Z Q. Diameter growth of Fraxinus mandshurica and its relation to silviculture techniques[J]. Journal of Northeast Forestry University, 2010, 38(9): 7-9.

    [20]那萌, 刘婷岩, 张彦东, 等. 林分密度对水曲柳人工林碳储量的影响[J]. 北京林业大学学报, 2017, 39(1): 20-26.

    NA M, LIU T Y, ZHANG Y D, et al. Effects of stock density on carbon storage in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2017, 39(1): 20-26.

    [21]郝玉琢, 王树力. 水曲柳人工纯林与混交林土壤生态化学计量特征的比较[J]. 东北林业大学学报, 2018, 46(3): 54-58.

    HAO Y Z, WANG S L. Soil ecological stoichiometric characteristics between pure Fraxinus mandshurica plantation and mixed F. mandshurica plantation[J]. Journal of Northeast Forestry University, 2018, 46(3): 54-58.

    [22]张新洁, 陆天宇, 孙海龙,等. 氮磷添加对水曲柳化学计量特征和养分再吸收的影响[J]. 森林工程, 2019, 35(5): 16-21.

    ZHANG X J, LU T X, SUN H L, et al. Effects of nitrogen and phosphorus addition on nutrient stoichiometry and resorption of Fraxinus mandshurica[J]. Forest Engineering, 2019, 35(5): 16-21.

    [23]孙晓阳, 刘婷岩, 那萌, 等. 水曲柳和落叶松人工纯林与混交林的碳储量[J]. 森林工程, 2018, 34(4): 15-20.

    SUN X Y, LIU T Y, NA M, et al. Carbon storage of pure and mixed stands of Fraxinus mandschurica and Larix olgensis plantation[J]. Forest Engineering, 2018, 34(4):15-20.

    [24]李改艳. 东北东部主要阔叶树种叶绿素与SPAD值模型及影响因素[D]. 哈尔滨: 东北林业大学, 2016.

    LI G Y. The relationship between chlorophyll and SPAD and the related factors for major broadleaved tree species in Northeast China[D]. Harbin: Northeast Forestry University, 2016.

    [25]梁星云, 刘世荣. 基于冠层塔吊原位测定长白山温带阔叶红松原始林群落主要树种的光合特征[J]. 应用生态学报, 2019, 30(5): 1494-1502.

    LIANG X Y, LIU S R. In-situ measurement of photosynthetic characteristics of dominant tree species based on canopy crane in a Korean pine broad-leaved forest in Changbai Mountain, Northeastern China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1494-1502.

    [26]WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3): 307-313.

    [27]吴楚, 王政权, 范志强, 等. 不同氮浓度和形态比例对水曲柳幼苗叶绿素合成、光合作用以及生物量分配的影响[J]. 植物生态学报, 2003, 27(6): 771-779.

    WU C, WANG Z Q, FAN Z Q, et al. Effects of different concentrations and form ratios of nitrogen on chlorophyll biosynthesis, photosynthesis, and biomass partitioning in Fraxinus mandshurica seedlings[J]. Acta Phytoecologica Sinica, 2003, 27(6): 771-779.

    [28]杨博文, 孙海龙, 吴楚. 低磷胁迫对水曲柳幼苗光合速率与氮素同化的影响[J]. 北京林业大学学报, 2015, 37(8): 18-23.

    YANG B W, SUN H L, WU C. Effects of phosphorus stress on photosynthesis and nitrogen assimilation of Fraxinus mandshurica seedlings[J]. Journal of Beijing Forestry University, 2015, 37(8): 18-23.

    [29]CHEN F S, NIKLAS K J, LIU Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age[J]. Tree Physiology, 2015, 35(10): 1106-1117.

    [30]蔡艷飞, 李世峰, 李树发, 等. 利用SPAD-502对高山杜鹃氮素营养的快速诊断研究[J]. 西部林业科学, 2014, 43(1): 40-46.

    CAI Y F, LI S F, LI S F, et al. Rapid nitrogen diagnosis for Rhododendron ‘Furnivalls daughter using SPAD-502[J]. Journal of West China Forestry Science, 2014, 43(1): 40-46.

    [31]WANG Y Z, HONG W, WU C Z, et al. Variation of SPAD values in uneven-aged leaves of different dominant species in Castanopsis carlessi forest in Lingshishan National Forest Park[J]. Journal of Forestry Research, 2009, 20(4): 362-366.