咸化湖盆混积岩中双重孔隙介质及其油气储集意义

吴丽荣 黄成刚 袁剑英 曹正林 万传治 潘星 张世铭 李智勇



摘要:柴达木盆地英西地区始新统下干柴沟组为咸化湖盆沉积的混积岩,其组分包括湖相碳酸盐、碎屑颗粒、泥质等,且岩石中含较多的盐类矿物。通过岩芯观察、物性分析、毛管压力测试、成像测井和场发射扫描电镜研究发现,混积岩具有双重孔隙介质,一类为孔径较大的裂缝和盐类矿物溶蚀孔,另一类为孔径较小的盐间缝和白云石晶间孔,共同构成了毛管压力曲线上的“低窄高宽的双平台”结构,岩石物性整体上较差,以“低孔—特低渗”为主,孔喉普遍较细。电子探针微区成分分析结果表明,白云石元素组成具有“高铝硅低铁锰”的地球化学特征,FeO平均质量分数为1.322%,MnO平均质量分数为0.060%,明显低于热液白云岩中的铁锰质量分数,为准同生交代成因的典型特征。白云石化过程中产生了大量收缩晶间孔,这类基质孔隙储油是支撑英西地区持续稳产的重要因素。
关键词:咸化湖盆;混积岩;裂缝;溶蚀孔;晶间孔;盐间缝;准同生交代;柴达木盆地
中图分类号:P618.130.2;TE122文献标志码:A
Doubleporosity System of Mixed Sediments in Saline
Lacustrine Basin and Its Significance to ReservoirWU Lirong1, HUANG Chenggang1, YUAN Jianying1, CAO Zhenglin1, WAN Chuanzhi1,
PAN Xing2, ZHANG Shiming1, LI Zhiyong1
(1. Key Laboratory of Reservoir Description, Northwest Branch of PetroChina Research Institute of Petroleum
Exploration and Development, Lanzhou 730020, Gansu, China; 2. School of Earth Sciences,
Lanzhou University, Lanzhou 730000, Gansu, China)Abstract: The Lower Ganchaigou Formation of Eocene in Yingxi area of Qaidam Basin is mixed sediments in saline lacustrine basin. It consists of lacustrine carbonate, detrital material and mud, and all the rocks contain many salt minerals. Based on core observation, physical property analysis, capillary pressure test, imaging logging and field emission scanning electron microscopy data, the mixed sediments contain doubleporosity system. One is fracture and salt mineral dissolution pore with big pore radius, another one is crack between the salt and dolomite intergranular pore with small pore radius. The two types of pores build the “narrow lowerwide higher doubleplatform” structure on the capillary pressure curves. On the whole, the physical property of the rock is very poor with the characteristics of “low porosityultra low permeability”. The pores and throats of the rock are generally fine. Electron microprobe analysis shows that the element composition of dolomite has the geochemical characteristics of “high contents of silicon and aluminum content, and low contents of iron and manganese”. The average mass fractions of FeO and MnO in the dolomicrite are 1.322% and 0.060%, which are obviously lower than that of Fe and Mn in the hydrothermal dolomite. It is considered that the dolomicrite has a penecontemporaneous metasomatic formation mechanism. A large number of shrinkage intergranular pores are produced during the dolomitization process. This kind of matrix pore as the storage space is an important support factor of sustained and stable production of oil and gas in Yingxi area of Qaidam Basin.
Key words: saline lacustrine basin; mixed sediment; fracture; dissolution pore; intergranular pore; crack between the salts; penecontemporaneous metasomatism; Qaidam Basin
0引言
Mount提出了混积岩的概念[1]。混积岩是指陆源碎屑与碳酸盐组分的混合沉积,或构成交替互层或夹层的混合[27]。混积岩一般发育于海陆过渡相和陆相湖盆边缘等陆、海(或湖)双因素控制的沉积环境[89],前人关于混积岩的研究也多集中在概念、成分比例、岩性命名等基本理论[1014],但针对咸化湖盆混积岩的报道较少[4,1517],特别是关于混积岩微观储层特征的精细刻画研究基本处于空白。近年来,Zhao提出咸化湖盆混积岩可形成优质储层[18],因此,本文以柴达木盆地英西地区始新统混积岩为研究对象,深入刻画咸化湖盆混积岩储层微观特征及其油气储集意义,为咸化湖盆成储理论研究提供新的思路。
1研究区地质概况
2014年,柴达木盆地英西地区始新统下干柴沟组混积岩的油气勘探取得了重大进展,特别是狮42井4 067 m处获得了高产工业油气流,标志着英西地区深层混积岩油气勘探的重大突破。前人已经在研究区构造演化和沉积特征方面取得了相关成果[1920],但对其主要产油层的微观储层特征研究极少。因其地处湖盆沉积中心附近,埋深较大,岩性较细且致密,前人普遍认为裂缝是研究区的主要储集空间,但随着部分钻井的多年持续稳产,他们开始意识到,除了裂缝外可能还发育更多的基质孔隙类型,因此,开展英西地区始新统微观储层特征研究显得至关重要。
英西地区位于柴达木盆地西部,夹持在昆仑山(祁漫塔格山)、阿尔金山之间,是一个第四纪经构造反转形成的“盆内山”,面积不足10 000 km2,其最高处海拔约4 000 m , 最低处海拔约3 000 m,总体上是复背斜,由狮子沟、干柴沟、油砂山等一系列背斜或向斜组成[19]。本区位于青海省海西州茫崖镇[21],构造分区上属西部坳陷区[22]。喜马拉雅早期构造事件在柴达木盆地主要发生于始新世[20],使盆地古地形逐渐由中生代的南高北低转化为北高南低和东高西低,沉积中心随之向南、向西迁移,沉积湖盆也迅速发展扩大,在盆地中西部地区沉积了巨厚的暗色泥岩[23],从而成为柴达木盆地西部地区重要的烃源岩。
整个柴达木盆地西部地区在始新世早期湖水面积开始扩大。英西地区主要发育半深湖相暗色泥岩沉积,始新世晚期继承了早期的沉积体系,湖水面积进一步扩大,但明显向东迁移;英西地区部分为浅湖沉积,部分为半深湖沉积(图1),其周边大面积发育辫状三角洲沉积,物源供给充分,岩石类型较为复杂,包括湖相碳酸盐岩、泥岩和泥质粉砂岩及其混合类型;除此之外,因研究区为咸化湖盆沉积环境[2427],盐类矿物在岩石中也广泛发育。整体上,英西地区储层较为致密,质量较差。
图件引自文献[21],有所修改
图1柴达木盆地英西地区始新统下干柴沟组沉积相分布
Fig.1Distribution of Sedimentary Facies in Lower Ganchaigou Formation of Eocene in Yingxi Area of Qaidam Basin2储层特征
2.1岩石学特征
沉积相研究成果显示英西地区始新世为湖相沉积,沉积物粒度较细,岩性主要为混积岩,其组分包括湖相碳酸盐岩、碎屑颗粒和泥质岩类等,部分岩石中盐类矿物含量较高。碳酸盐岩主要以泥晶结构为主,又可分为灰岩和白云岩,其中泥晶白云岩为研究区重要的储集岩。X射线衍射全岩矿物分析结果(表1)显示,碳酸盐矿物在各类岩石中分布最为广泛,据不完全统计,其含量(质量分数,下同)为109%~47%,碎屑颗粒含量多数分布在20%~30%,盐类矿物在岩石中也普遍可见,如硬石膏(含量为0.9%~16%)、钙芒硝(1.1%~19.3%)、石盐(0.5%~5.9%)等,泥质含量为4.6%~27%。
关于混积岩的分类和命名,学者们观点略有差别。Mount采用四分法[28],由硅质碎屑砂、粉砂黏土混合泥、碳酸盐异化粒以及灰泥构成一个三角四面体分类系统,按比例进行划分和命名。杨朝青等在统计研究的基础上, 提出了由陆源碎屑、碳酸盐(颗粒或灰泥,不包括胶结物)、黏土等3个端元组成的混合组分岩石分类图,将组分落在碳酸盐含量大于25%,陆源碎屑含量大于10%范围内的岩石命名为混积岩,然后根据岩石中各组分的含量及结构,按习惯方案在混积岩前加前缀作进一步描述[29]。张雄华将黏土、陆源碎屑和碳酸盐作为混积岩分类命名的3个端元[30],其中黏土含量大于50%的称为黏土岩,碳酸盐含量为5%~95%或陆源碎屑含量为5%~95%的混合沉积物称为混积岩,并将混积岩分为含陆源碎屑碳酸盐混积岩、陆源碎屑质碳酸盐混积岩、含碳酸盐陆源碎屑混积岩和碳酸盐质陆源碎屑混积岩,考虑到陆源碎屑的粒级、成分和碳酸盐成分,可进一步加前缀。
本文根据前人在柴达木盆地的研究,采用较为通俗易懂、可操作性强的划分方案,即将泥质、陆源碎屑颗粒和碳酸盐作为混积岩分类命名的3个端元,将含量占比最多的端元定为主名,其余的前缀根据岩石“三级命名法”确定,将含量在25%~50%范围内的定为“质”,将含量在10%~25%范围内的定为“含”,如果主名为碳酸盐岩,则根据方解石和白云石相对含量进一步划分为灰岩或者白云岩。
关于混积岩的成因,Mount提出4种可能的成因类型:间断混合、相混合、原地混合和受母源影响混合[1]。徐伟等研究认为柴达木盆地西部地区广泛发育机械成因的相混合混积岩[4]。基于对英西地区混积岩的沉积环境和矿物学、岩石学特征综合研究,笔者认为英西地区混积岩的岩矿组成主要受控于相混合和咸化湖盆的沉积环境。研究表1全岩矿物含量
Fig.2Relationship Between Porosity and Permeability2.2物性和孔隙结构特征
通过研究区29块岩石的常规物性测试结果可以得出,其物性变化范围较大。孔隙度(φ)分布范围为0.1%~14.2%,平均值为4.4%,渗透率(k)分布范围为(0.02~15.60)×10-3μm2,平均值为060×10-3μm2,且孔隙度和渗透率相关性较差(图2),表明孔喉连通性较差。因研究区碳酸盐岩较为发育且物性普遍较差,所以对研究区岩石进行物性分级时采用行业标准《油气储层评价方法》(SY/T 6285—2011)中碳酸盐岩储层孔隙度、渗透率类型划分标准[31](表2),可将其划归为“低孔—
表2碳酸盐岩储层孔隙度、渗透率类型划分标准
Tab.2Division Standards of Porosity and Permeability
Types for Carbonate Reservoir类型范围孔隙度高φ≥20%孔隙度中12%≤φ<20%孔隙度低4%≤φ<12%孔隙度特低φ<4%渗透率高k≥100×10-3 μm2渗透率中10×10-3 μm2≤k<100×10-3 μm2渗透率低1×10-3 μm2≤k<10×10-3 μm2渗透率特低k<1×10-3 μm2特低渗”级别。
压汞测试结果显示,岩石孔隙结构普遍较差,毛管压力曲线具有“低窄高宽的双平台”结构。形成的主要原因是:相对较少的裂缝和溶蚀孔的进汞量随压力变化特征形成了“低窄平台”,数量众多但孔径较小的晶间孔广泛发育,其进汞量随压力变化特征形成了“高宽平台”。孔隙喉道半径呈“双峰式”分布,主要在“4.3~13.7 μm”和“0.004~0.027 μm”两个范围内较为集中分布(图3)。从两种孔隙介质对进汞量的贡献作用来看,小孔径的贡献率是大孔径的2~3倍。
2.3孔隙类型
研究区钻井资料显示,狮24斜井从1997年至今已累计产油4.82×104 t,实现了多年稳产(日产油7.77 t,初期日产油29.97 t),图3岩石毛管压力曲线
Fig.3Capillary Pressure Curves of Rocks狮新28井从1998年至今已累计产油15.11×104 t,也实现了多年稳产(日产油751 t,初期日产油123 t)。油井产量的衰减变化与其油气储层的孔隙类型显著相关,建产初期的高产与其裂缝发育有关,成像测井成果证实了岩层中的裂缝广泛发育[图4(a)]。岩芯观察结果显示,在盐类矿物较为发育的区域易产生溶蚀孔,主要为石膏、岩盐等矿物溶蚀产生的孔洞[图4(b)、(c)],大小为数毫米。除了发育孔径较大的裂缝和溶蚀孔外,在场发射扫描电镜下还可观察到另外两类孔径极小的微孔隙:一类为盐类矿物结晶时产生的极小晶间缝,在纳米级晶间缝中储藏着石油[图4(f)~(i)];另一类发育最广泛的微孔隙为白云石晶间孔[图4(d)、(e)],孔径为数百纳米至数微米,这些泥晶的云质岩在柴达木盆地西部地区咸化湖盆沉积中广泛分布,孔径较小但数量众多是造成大多数样品渗透率较低的主要原因,为研究区大量产油井持续稳产起着重要的支撑作用。3白云石晶间孔成因分析
X射线衍射全岩矿物分析结果显示,云质岩中白云石含量多分布在30%~40%范围内,均为泥晶白云石,其白云石颗粒晶形在偏光显微镜下难以分辨,但在场发射扫描电镜下清晰可见,为研究区重要的储集空间之一,也是支撑研究区持续多年稳产的重要因素。通过对岩石中白云石颗粒进行电子探针微区化学成分分析(表3)可以得出,其主成分为CaO和MgO。CaO含量介于28.834%~38647%,平均为33.646%,高于白云石中CaO理论含量(30.411%);MgO含量为11.592%~22222%,平均为17773%,低于白云石中MgO理论含量(21857%)。由此可以计算出白云石中Ca与Mg摩尔比值为1361,高于理想白云石(CaMg(CO3))中Ca与Mg摩尔比值(1.000)。这种富钙低镁的泥晶白云岩不是在成分组成上处于理想状态的白云岩。表3白云石电子探针成分组成分析结果
Fig.4Types of Reservoir Spaces of Rocks郑荣才等研究认为,湖相白云岩多为准同生交代或埋藏热液交代成因[3234]。研究区白云岩中FeO含量介于0.421%~2.264%,平均为1.322%,MnO含量介于0%~0.118%,平均为0.060%,FeO和MnO平均含量明显低于热液成因的白云岩中FeO平均含量(1.917%)和MnO平均含量(0323%)[35],也低于青西凹陷受热液流体影响的原生白云岩中铁锰含量(FeO平均含量为10.18%,MnO平均含量为0.36%)[32]。因各种来源的热液流体通常都富含Fe和Mn,英西地区这种白云岩具有较低的铁锰含量表明其与热液活动无关[3637]。SiO2含量介于0.194%~10.675%,平均为4158%,Al2O3含量介于0.206%~9.954%,平均为2457%,反映出一种湖盆边缘过渡相的混积沉积特征。白云石的这种“高铝硅低铁锰”的地球化学特征为典型准同生交代成因特征,且准同生期交代形成的白云石晶间孔的孔径明显小于热液重结晶的白云石晶间孔,前者多小于1 μm,偏光显微镜下难以分辨,后者为数微米甚至十几微米。因此,研究区湖相泥晶白云岩应为准同生交代成因。
Mg2+和Ca2+的离子半径分别为0078、0106 nm[38]。白云石化过程中,2个CaCO3分子中的1个Ca2+被Mg2+置换,从而形成CaMg(CO3)2。由于离子半径的差异,交代过程会造成矿物体积收缩,从而形成晶间孔。通过理论计算可知,白云石化过程中2 mol方解石变成1 mol白云石,摩尔体积由7360 cm3·mol-1变为6448 cm3·mol-1,体积收缩9.12 cm3。测试发现英西地区白云石的有序度为0.4左右,表明这种泥晶白云石形成于成核结晶速度较快的相对不太稳定的准同生成岩环境[39]。流体中Mg2+置换Ca2+的速度较快,不能及时进行有规律的排列,因此,形成了这种低有序度和高CaCO3摩尔分数的白云石[40]。
4结语
(1)提出支撑柴达木盆地英西地区混积岩中油气高产稳产的重要因素为其始新统储层中发育的双重孔隙介质。一类为储集空间较大的裂缝和盐类矿物溶蚀孔,另一类为孔径极小但数量众多的盐间缝和白云石晶间孔。这种双重孔隙介质在毛管压力曲线上表现为“低窄高宽的双平台”结构。
(2)研究区发育的泥晶白云岩具有典型准同生交代成因特征:①白云石微区成分分析结果显示其具有“高铝硅低铁锰”的微量元素地球化学特征,不同于热液成因特征;②准同生交代成因的泥晶白云石的晶间孔孔径明显小于热液重结晶的晶间孔,前者多小于1 μm,偏光显微镜下难以分辨,后者为数微米甚至十几微米。这类基质孔隙的发现对柴西地区深层油气勘探具有重要意义。参考文献:
References:[1]MOUNT J F.Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments[J].Geology,1984,12(7):432435.
[2]HOLMES C W.Carbonate and Siliciclastic Deposits on Slope and Abyssal Floor Adjacent to Southwestern Florida Platform[J].AAPG Bulletin,1983,67(3):484485.
[3]TIRSGAARD H.Cyclic Sedimentation of Carbonate and Siliciclastic Deposits on a Late Precambrian Ramp:The Elisabeth Bjerg Formation (Eleonore Bay Supergroup),East Greenland[J].Journal of Sedimentary Research,1996,66(4):699712.
[4]徐伟,陈开远,曹正林,等.咸化湖盆混积岩成因机理研究[J].岩石学报,2014,30(6):18041816.
XU Wei,CHEN Kaiyuan,CAO Zhenglin,et al.Original Mechanism of Mixed Sediments in the Saline Lacustrine Basin[J].Acta Petrologica Sinica,2014,30(6):18041816.
[5]王杰琼,刘波,罗平,等.塔里木盆地西北缘震旦系混积岩类型及成因[J].成都理工大学学报:自然科学版,2014,41(3):339346.
WANG Jieqiong,LIU Bo,LUO Ping,et al.Classification and Genesis of Sinian Mixosedimentite from Northwest Margin of Tarim Basin,China[J].Journal of Chengdu University of Technology:Science and Technology Edition,2014,41(3):339346.
[6]司马立强,杨毅,吴丰,等.柴西北小梁山地区狮子沟组混积岩储层评价[J].现代地质,2014,28(1):173180.
SIMA Liqiang,YANG Yi,WU Feng,et al.Reservoir Evaluation on Mixing Deposit of Shizigou Formation in Xiaoliangshan,Northwest of Qaidam Basin[J].Geoscience,2014,28(1):173180.
[7]司马立强,杨毅,吴丰,等.柴西北小梁山地区混积岩测井岩性识别[J].地质科技情报,2014,33(2):180185.
SIMA Liqiang,YANG Yi,WU Feng,et al.Lithology Identification on Mixing Deposit with Logging Data in Northwest Xiaoliangshan of Qaidam Basin[J].Geological Science and Technology Information,2014,33(2):180185.
[8]BROOKS G R,DOYLE L J,SUTHARD B C,et al.Facies Architecture of the Mixed Carbonate/Siliciclastic Inner Continental Shelf of Westcentral Florida:Implications for Holocene Barrier Development[J].Marine Geology,2003,200(1/2/3/4):325349.
[9]GARCIAGARCIA F,SORIA J M,VISERAS C,et al.Highfrequency Rhythmicity in a Mixed Siliciclasticcarbonate Shelf(Late Miocene,Guadix Basin,Spain):A Model of Interplay Between Climatic Oscillations,Subsidence,and Sediment Dispersal[J].Journal of Sedimentary Research,2009,79(5/6):302315.
[10]张锦泉,叶红专.论碳酸盐与陆源碎屑的混合沉积[J].成都地质学院学报,1989,16(2):8792.
ZHANG Jinquan,YE Hongzhuan.A Study on Carbonate and Siliciclastic Mixed Sediments[J].Journal of Chengdu College of Geology,1989,16(2):8792.
[11]丁一,李智武,冯逢,等.川中龙岗地区下侏罗统自流井组大安寨段湖相混合沉积及其致密油勘探意义[J].地质论评,2013,59(2):389400.
DING Yi,LI Zhiwu,FENG Feng,et al.Mixing of Lacustrine Siliciclasticcarbonate Sediments and Its Significance for Tight Oil Exploration in the Daanzhai Member of Lower Jurassic Ziliujing Formation in Longgang Area,Central Sichuan Basin[J].Geological Review,2013,59(2):389400.
[12]沙庆安.混合沉积和混积岩的讨论[J].古地理学报,2001,3(3):6366.
SHA Qingan.Discussion on Mixing Deposit and Hunji Rock[J].Journal of Palaeogeography,2001,3(3):6366.
[13]禚喜准,王琪,张瑞,等.柴达木盆地北缘下干柴沟组下段湖相混合沉积发育特征及其对储层的影响[J].沉积学报,2013,31(4):724729.
ZHUO Xizhun,WANG Qi,ZHANG Rui,et al.The Characteristics of Lacustrine Mixed Deposit in Lower Xiaganchaigou Formation and Its Effect on Reservoir Property: A Case in the Central Areas of Northern Qaidam Basin[J].Acta Sedimentologica Sinica,2013,31(4):724729.
[14]赵灿,李旭兵,郇金来,等.碳酸盐与硅质碎屑的混合沉积机理和控制因素探讨[J].地质论评,2013,59(4):615626.
ZHAO Can,LI Xubing,HUAN Jinlai,et al.Mechanism of Mixied Siliciclasticcarbonate Sediments and Its Controlling Factors[J].Geological Review,2013,59(4):615626.
[15]苟迎春,曹正林,张小军,等.咸化湖盆三角洲沉积模拟实验研究[J].现代地质,2014,28(6):12841288.
GOU Yingchun,CAO Zhenglin,ZHANG Xiaojun,et al.Delta Sedimentary Simulating Experiment on Saline Basin[J].Geoscience,2014,28(6):12841288.
[16]陈启林.大型咸化湖盆地层岩性油气藏有利条件与勘探方向[J].岩性油气藏,2007,19(1):4651.
CHEN Qilin.Favorable Condition and Exploration Prospecting of Lithologic Hydrocarbon Reservoir in Largescale Saline Basin[J].Lithologic Reservoirs,2007,19(1):4651.
[17]施辉,刘震,连良达,等.高原咸化湖盆岩性油气藏富集规律:以柴达木盆地西南区为例[J].天然气地球科学,2013,24(4):701711.
SHI Hui,LIU Zhen,LIAN Liangda,et al.Enrichment Regularity of Lithologic Reservoirs in Plateau Saline Lacustrine Basin:Taking the Southwestern Qaidam Basin for Example[J].Natural Gas Geoscience,2013,24(4):701711.
[18]ZHAO F.Lacustrine Algal Limestone Reservoir in Western Qaidam Basin,China[J].Carbonates and Evaporites,2013.doi:10.1007/s1314601301821.
[19]钟建华,刘云田,姜波,等.柴达木盆地英雄岭曲流河边滩的沉积学特征[J].石油学报,2002,23(3):4347.
ZHONG Jianhua,LIU Yuntian,JIANG Bo,et al.Sedimentary Features of the Point Bar Intermane(Seasonal) Meadering Stream:Taking the Meadering Stream Developing in Hero Hill of Qaidam Basin as an Example[J].Acta Petrolei Sinica,2002,23(3):4347.
[20]王桂宏,李永铁,张敏,等.柴达木盆地英雄岭地区新生代构造演化动力学特征[J].地学前缘,2004,11(4):417423.
WANG Guihong,LI Yongtie,ZHANG Min,et al.Cenozoic Dynamics Characteristics of Tectonic Evolution in Yingxiongling Area in Qaidam Basin[J].Earth Science Frontiers,2004,11(4):417423.
[21]曹正林,袁剑英,黄成刚,等.高温高压碎屑岩储层中石膏溶解对方解石沉淀的影响[J].石油学报,2014,35(3):450454.
CAO Zhenglin,YUAN Jianying,HUANG Chenggang,et al.Influence of Plaster Dissolution on Calcite Precipitation in Clastic Reservoirs Under Hightemperature and Highpressure Conditions[J].Acta Petrolei Sinica,2014,35(3):450454.
[22]黄成刚,袁剑英,曹正林,等.咸化湖盆碎屑岩储层中铁白云石的溶蚀作用模拟实验研究[J].石油实验地质,2014,36(5):650655.
HUANG Chenggang,YUAN Jianying,CAO Zhenglin,et al.Simulation Experiment for the Ankerite Dissolution in Clastic Reservoir of Saline Lacustrine Basin[J].Petroleum Geology and Experiment,2014,36(5):650655.
[23]付锁堂,张道伟,薛建勤,等.柴达木盆地致密油形成的地质条件及勘探潜力分析[J].沉积学报,2013,31(4):672682.
FU Suotang,ZHANG Daowei,XUE Jianqin,et al.Exploration Potential and Geological Conditions of Tight Oil in the Qaidam Basin[J].Acta Sedimentologica Sinica,2013,31(4):672682.
[24]黄成刚,袁剑英,曹正林,等.咸化湖盆中酸性流体对碎屑岩储层的改造作用[J].地球科学与环境学报,2014,36(3):5260.
HUANG Chenggang,YUAN Jianying,CAO Zhenglin,et al.Reconstruction of Acid Fluid on Clastic Reservoir in Saline Lacustrine Basin[J].Journal of Earth Sciences and Environment,2014,36(3):5260.
[25]金强,朱光友.中国中新生代咸化湖盆烃源岩沉积的问题及相关进展[J].高校地质学报,2006,12(4):483492.
JIN Qiang,ZHU Guangyou.Progress in Research of Deposition of Oil Source Rocks in Saline Lakes and Their Hydrocarbon Generation[J].Geological Journal of China Universities,2006,12(4):483492.
[26]金强.柴达木盆地西部第三系蒸发岩微量元素组成及其地球化学特征[J].石油大学学报:自然科学版,2003,27(2):15.
JIN Qiang.Geochemistry Characteristics of Trace Elements in Evaporates of the Tertiary in Western Qaidam Basin[J].Journal of the University of Petroleum,China:Natural Science Edition,2003,27(2):15.
[27]张晓宝,胡勇,马立元,等.柴达木盆地西部第三系盐湖相天然气碳同位素特征、成因与分布[J].中国科学:D辑,地球科学,2002,32(7):598608.
ZHANG Xiaobao,HU Yong,MA Liyuan,et al.Carbon Isotope Compositions of Natural Gases from Neogene Saline Sediments in the Western Qaidam Basin and Their Origin and Distribution[J].Science in China:Series D,Earth Sciences,2002,32(7):598608.
[28]MOUNT J F.Mixed Siliciclastic and Carbonate Sediments:A Proposed Firstorder Textural and Compositional Classification[J].Sedimentology,1985,32(3):435442.
[29]杨朝青,沙庆安.云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J].沉积学报,1990,8(2):5964.
YANG Chaoqing,SHA Qingan.Sedimentary Environment of the Middle Devonian Qujing Formation in Qujing,Yunnan Province:A Kind of Mixing Sedimentation of Terrigenous Clastics and Carbonate[J].Acta Sedimentologica Sinica,1990,8(2):5964.
[30]张雄华.混积岩的分类和成因[J].地质科技情报,2000,19(4):3134.
ZHANG Xionghua.Classification and Origin of Mixosedimentite[J].Geological Science and Technology Information,2000,19(4):3134.
[31]SY/T 6285—2011,油气储层评价方法[S].
SY/T 6285—2011,Evaluating Methods of Oil and Gas Reservoirs[S].
[32]文华国,郑荣才,QING Hairuo,等.青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩[J].中国科学:地球科学,2014,44(4):591604.
WEN Huaguo,ZHENG Rongcai,QING Hairuo,et al.Primary Dolostone Related to the Cretaceous Lacustrine Hydrothermal Sedimentation in Qingxi Sag,Jiuquan Basin on the Northern Tibetan Plateau[J].Science China:Earth Sciences,2014,44(4):591604.
[33]郑荣才,文华国,范铭涛,等.酒西盆地下沟组湖相白烟型喷流岩岩石学特征[J].岩石学报,2006,22(12):30273038.
ZHENG Rongcai,WEN Huaguo,FAN Mingtao,et al.Lithological Characteristics of Sublacustrine White Smoke Type Exhalative Rock of the Xiagou Formation in Jiuxi Basin[J].Acta Petrologica Sinica,2006,22(12):30273038.
[34]瞿建华,余朝丰,李啸,等.伊犁盆地下石炭统阿克沙克组白云岩特征[J].西南石油大学学报:自然科学版,2015,37(1):3343.
QU Jianhua,YU Chaofeng,LI Xiao,et al.A Research on Characteristics of Dolostones in Akeshake Formation,Lower Carboniferous,Ili Basin[J].Journal of Southwest Petroleum University:Science and Technology Edition,2015,37(1):3343.
[35]朱东亚,金之钧,胡文瑄.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J].中国科学:地球科学,2010,40(2):156170.
ZHU Dongya,JIN Zhijun,HU Wenxuan.Hydrothermal Recrystallization of the Lower Ordovician Dolomite and Its Significance to Reservoir in Northern Tarim Basin[J].Science China:Earth Sciences,2010,40(2):156170.
[36]SMITH L B.Origin and Reservoir Characteristics of Upper Ordovician Trentonblack River Hydrothermal Dolomite Reservoirs in New York[J].AAPG Bulletin,2006,90(11):16911718.
[37]MONTANEZ I P.Late Diagenetic Dolomitization of Lower Ordovician,Upper Knox Carbonates:A Record of the Hydrodynamic Evolution of the Southern Appalachian Basin[J].AAPG Bulletin,1994,78(8):12101239.
[38]韩吟文,马振东.地球化学[M].北京:地质出版社,2003.
HAN Yinwen,MA Zhendong.Geochemistry[M].Beijing:Geological Publishing House,2003.
[39]何莹,鲍志东,沈安江,等.塔里木盆地牙哈—英买力地区寒武系—下奥陶统白云岩形成机理[J].沉积学报,2006,24(6):806818.
HE Ying,BAO Zhidong,SHEN Anjiang,et al.The Genetic Mechanism of Dolostones of the CambrianLower Ordovician in YahaYingmaili Region,Tarim Basin[J].Acta Sedimentologica Sinica,2006,24(6):806818.
[40]王兵杰,蔡明俊,林春明,等.渤海湾盆地塘沽地区古近系沙河街组湖相白云岩特征及成因[J].古地理学报,2014,16(1):6576.
WANG Bingjie,CAI Mingjun,LIN Chunming,et al.Characteristics and Origin of Lacustrine Dolostone of the Paleogene Shahejie Formation in Tanggu Area,Bohai Bay Basin[J].Journal of Palaeogeography,2014,16(1):6576.第37卷第2期2015年3月地球科学与环境学报Journal of Earth Sciences and EnvironmentVol37No2Mar. 2015