西天山阿吾拉勒东南部晚石炭世—中二叠世中酸性小岩体成因及地质意义

黄栋 张成立 马中平++何贤英++高晓峰 魏强 杨蓉 孙吉明 李平
陜西 西安710054; 3中国石油新疆油田公司准东采油厂,新疆 阜康831511)
摘要:西天山阿吾拉勒东南部艾肯达坂花岗岩和2752高地闪长玢岩浅成小岩体侵入于石炭系火山沉积岩中,岩石无变形,呈均一块状,具斑状/似斑状结构,属准铝质到弱过铝质高钾钙碱性花岗岩类,富集Rb、Th、U、K和Pb等大离子亲石元素,贫Zr、Hf等高场强元素,显示中等到弱的负Eu异常,亏损Nb、Ta、P、Ti和Sr等元素,具壳源岛弧区岩浆作用的地球化学特征。这两个岩体锆石均为正εHf(t)值和新元古代Hf陆壳模式年龄,指示其主要源自新元古代陆壳物质的部分熔融,个别锆石εHf(t)值明显高表明岩体形成过程还有幔源岩浆物质的加入。LAICPMS锆石UPb定年分别获得2752高地闪长玢岩307 Ma和艾肯达坂花岗岩282 Ma的形成年龄,与区域上同期小岩体一同对应于西天山大规模壳幔花岗岩浆活动末期,证明在晚石炭世—中二叠世期间,伴随着西天山大规模花岗岩浆活动的减弱,出现一期重要的小规模中酸性岩浆活动。综合分析西天山晩石炭世—中二叠世各类岩浆作用,该时期中酸性小岩体为后碰撞向陆内伸展拉张过渡阶段岩浆活动的产物,指示西天山晚石炭世晚期深部动力学背景和构造环境发生了重要转折。
关键词:中酸性小岩体;锆石UPb年龄;地球化学;Hf同位素;成因;后碰撞;西天山
中图分类号:P597+.3;P595文献标志码:A
Origin and Its Geological Significance of Late CarboniferousMiddle
Permian Intermediateacid Small Plutons in the Southeastern Awulale Area of West Tianshan, China
HUANG Dong1, ZHANG Chengli1, MA Zhongping2, HE Xianying3, GAO Xiaofeng2,
WEI Qiang1, YANG Rong1, SUN Jiming2, LI Ping2
(1. State Key Laboratory of Continental Dynamics, Northwest University, Xian 710069, Shaanxi, China;
2. Xian Center of Geological Survey, China Geological Survey, Xian 710054, Shaanxi, China;
3. Zhundong Oil Production Plant, Xinjiang Oilfield Company, PetroChina, Fukang 831511, Xinjiang, China)
Abstract: Aikendaban granite and 2752 Gaodi dioritic porphyrite in the southeastern Awulale area of West Tianshan intrude into Carboniferous volcanicsedimentary sequences, showing undeformed uniform massive structures and porphyric/porphyriclike textures. Geochemically, they are enriched in large ion lithophile elements (Rb, Th, U, K, Pb, etc.), poor in high field strength elements (Zr, Hf, etc.), depleted in Nb, Ta, P, Ti, Sr, etc., Eu anomalies are weakmedium negative, displaying the feature similar to those of crustderived magmatism in island arc. The zircons from Aikendaban granite and 2752 Gaodi dioritic porphyrite have positive εHf(t) and Neoproterozoic continental crust model age, suggesting that they result from the partial melting of Neoproterozoic continental crust materials; however, individual zircons have higher εHf(t), indicating the involvement of mantlederived magmatic materials during the formation of granitic pluton. LAICPMS zircon UPb ages of Aikendaban granite and 2752 Gaodi dioritic porphyrite are 282 Ma and 307 Ma, respectively; the ages correspond to the forming period of regional small plutons and the late period of largescale crustmantle granitic magmatism in West Tianshan, suggesting a smallscale intermediateacid magmatism with the weakening of largescale granitic magmatism from Late Carboniferous to Middle Permian. Based on the comprehensive analysis of Late CarboniferousMiddle Permian magmatism, the occurrence of these small plutons indicates an intermediateacid magmatism, implying a decreasing of largescale magmatism in the transitional stage from postcollision to intracontinental extension, and indicating an important turning point of the deep dynamical background and the tectonic environment in West Tianshan.
Key words: intermediateacid small plutons; zircon UPb age; geochemistry; Hf isotope; origin; postcollision; West Tianshan
0引言
天山造山带为中亚造山带在中国境内的重要组成部分,以东经88°为界,可分为东、西两个部分[1]。古生代期间,该造山带经历了俯冲、增生和碰撞的复杂演化过程,于不同阶段形成不同成因的侵入岩和火山岩。其中,一个显著的特点是西天山广泛发育晚古生代不同类型侵入岩和火山岩,前人对此已有大量研究,然而有关这些晚古生代岩浆作用成因、形成环境及其演化过程至今还存在较大分歧。夏林圻等依据该区下石炭统底部出现的区域不整合及其早石炭世大哈拉军山组火山岩的成因研究,提出天山造山带早石炭世已转入与造山后裂谷有关的构造演化阶段,且认为这些石炭纪—早二叠世形成的大量裂谷火山岩构成一与地幔柱有关的大火成岩省[27]。西天山与该阶段相关的、形成于280~350 Ma的花岗岩类目前也多被认为是后碰撞环境岩浆作用的产物[813];这意味着西天山早石炭世后可能进入了与造山后伸展有关的构造阶段。然而,赵振华等根据大哈拉军山组火山岩岩石地球化学特征,提出其形成于岛弧环境的不同观点[1316],并认为西天山与洋盆消减有关的火山活动可持续到晚石炭世[1718],这说明西天山晚古生代构造演化的复杂性。
西天山地区除出露晚古生代火山岩和花岗岩类之外,在其中段的阿吾拉勒东南部还出露很多晚古生代中酸性小岩株/岩体,但至今鲜有这些小岩体成因的详细报道。造山带小岩株/岩体的出现意味着大规模岩浆活动已结束,可能开始转入新的构造演化阶段,并预示了深部动力学背景的改变,因此,对西天山这些小岩体成因研究不仅能为上述问题的解决提供证据,也能为西天山晚古生代构造演化过程的探讨提供重要约束。基于此,本文选取阿吾拉勒东南部艾肯达坂及独库公路2752高地两个代表性岩体开展岩石学、地球化学及锆石UPb年代学和Hf同位素综合研究,并结合同期岩浆作用的成因特征,讨论晚石炭世—中二叠世西天山地区中酸性小岩体成因和地质意义,为进一步探讨该阶段西天山的构造演化过程提供新证据。
1区域地质概况及岩体特征
西天山造山带分别由南、北天山两大断裂带分割为北天山、中天山及南天山3个构造带。其中,中天山构造带属高海拔山地区,地层出露良好,并大量发育古生代不同时期各类侵入岩和喷出岩类。阿吾拉勒山脉区位于中天山构造带伊犁地块东南部,除北部出露下古生界志留系碎屑岩外,主要发育石炭系和二叠系火山沉积岩,大致呈近EW向展布,区内断裂呈NWW—SEE向切割这些地层(图1)。区内石炭系地层由下石炭统大哈拉军山组和上石炭统伊什基里克组构成。其中,大哈拉军山组广布全区,不整合于前石炭纪不同地层之上,为一套杂色中酸性熔岩、火山碎屑岩、砂岩、砾岩夹少量灰岩,其上不整合覆盖上石炭统伊什基里克组玄武岩、流纹巖和少量安山岩及火山碎屑岩。二叠系火山碎屑岩为艾肯达坂组,出露于中部,以熔岩、角砾岩、集块岩为主,为一套以紫红、暗紫红为主色调的陆相火山岩建造,呈不整合覆盖在伊什基里克组之上。该组中酸性火山岩获得260~270 Ma的形成年龄,因而被限定为早二叠世[1920]。
此外,这些火山沉积岩层中侵入有不同时期和不同类型的岩浆侵入体,较大的花岗岩体多形成于石炭纪,并呈椭圆状出露于中北部,其长轴方向基本与区域构造线一致。南部主要出露小岩株/岩体,其长轴呈SN向或NE向斜切区域构造线(图1)。其中,东南部艾肯达坂花岗岩和中西部2752高地闪长玢岩最具代表性,二者均侵入于石炭系火山沉积岩中。位于东南部的艾肯达坂岩体出露于新疆维吾尔自治区和静县巩乃斯林场东南部,岩体平面上呈椭圆形,长约7 km,宽约4 km,面积约28 km2,长轴走向呈NE向,内部无任何变形,岩石具均一块状和具似斑状结构。位于中西部的2752高地岩体出露于巩乃斯林场西北部,呈小岩株产出,由3个长轴呈SN向延伸的小岩体构成。其中,东部较大的岩体呈分叉状产出,西部分支被独库公路横穿,出露良好,岩体内无任何变形,岩石亦为均一块状,并发育典型的斑状结构。
艾肯达坂花岗岩以均一块状和发育似斑状结构为特征,对该岩体采集5件代表性样品,采样点地理坐标为(43°14′34.2″N,84°53′32″E)。岩石主要由钾长石(体积分数为45%~50%)、石英(30%~35%)、斜长石(5%~8%)和少量黑云母(5%~8%)及角闪石(约3%)组成,副矿物有锆石、磷灰石和榍石等。斑晶主要为钾长石,多呈板状,不同程度发生泥化,部分斑晶呈熔蚀球状,并出现白色钠长石环边[图2(a)]。暗色矿物黑云母及角闪石呈半自形晶,多发生绿泥石化;斜长石呈自形或半自形板状;石英呈不规则他形粒状,产于其他矿物之间[图2(b)]。
图2中酸性小岩体野外及显微照片
Fig.2Field Photographs and Microphotographs of Intermediateacid Small Plutons
2752高地闪长玢岩具典型斑状结构,岩体内部岩石也很均一。独库公路穿过东部小岩株的西部分支,出露良好,因而沿公路在(43°24′35″N,84°23′47″E)位置及其附近采集5件样品。该岩体岩石斑晶体积分数为25%~30%,主要为1~3 cm大小不等的自形斜长石,部分斑晶已不同程度绢云母化。其基质矿物为半自形或自形斜长石(体积分数为20%~25%)、半自形单斜辉石(约15%)、钾长石(10%~12%)、石英(15%~18%)、黑云母(约3%)及少量不透明金属矿物(2%),副矿物为锆石、磷灰石等。其中,辉石和黑云母多呈半自形晶,被包裹于长石矿物中,大多不同程度发生绿泥石化,特别是黑云母多已被蚀变为绿泥石,并析出少量铁[图2(d)]。
2分析方法
锆石单矿物分离在河北省廊坊市区域地质调查队实验室采用常规重力与磁选方法完成。此后,在双目镜下挑选结晶好、透明度高、无裂隙、无包裹体的锆石,将其置于厚约0.8 cm的PVC圆管中充入环氧树脂固结制成样靶;待固结后,打磨、抛光至所有锆石颗粒出露约一半即可。锆石阴极发光(CL)图像分析和UPb定年在西北大学大陆动力学国家重点实验室完成。锆石UPb定年的激光剥蚀斑束直径为32 μm,激光脉冲宽度为15 ns,能量为32~36 mJ,剥蚀深度为20~40 μm。试验中使用氦气作为剥蚀物质的载气,采用单点剥蚀方式,每完成6个分析点的测定,加测标样一次。锆石年龄测试用国际标准锆石91500作为外标,元素含量(质量分数,下同)采用NIST RM610作为外标,采用29Si作为内标,详细测试过程参见文献[21]。N(207Pb)/N(206Pb)、n(206Pb)/n(238U)、n(207Pb)/n(235U)、n(208Pb)/n(232Th)等以及同位素含量由GLITTER4.0软件计算获得,应用ISOPLOT3.0软件完成年龄计算和谐和曲线的绘制。锆石LuHf同位素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室使用Neptune Plus多接收等离子质谱仪(Thermo Fisher Scientific,德国)和 GeoLas 2005激光剥蚀系统(LAMCICPMS)(Lambda Physik,德国)测试完成,测试过程采用单点剥蚀模式,所用斑束直径为44 μm,用氦气作为剥蚀物质载气,以国际标准锆石91500、GJ1、TEM为标样,详细仪器操作条件和分析方法见Hu等的描述[22]。
主量、微量元素分析在西北大学大陆动力学国家重点实验室完成。主量元素含量采用日本理学RIX2100X荧光光谱仪玻璃熔饼法测试,使用BCR2和GBW07105为标样进行质量监控,分析误差优于5%,烧失量用重量法获得。微量元素含量由Agilent 7500a 等离子体质谱仪(ICPMS)测试获得,测试中使用AGV1、BCR2、G2和RGM1国际标样监控。Rb、Y、Zr、Nb、Hf、Ta和稀土元素(除Hf和Lu)等分析相对误差低于5%,其他元素相对误差介于5%~10%之间。
3结果分析
3.1锆石UPb定年
艾肯达坂花岗岩中锆石为无色半透明—透明,呈长柱状,长宽比为2∶1~4∶1,粒径为80~200 μm,锆石内部发育明显的岩浆振荡环带[图3(a)]。对23颗锆石开展LAICPMS锆石UPb定年,结果见表1。所有锆石Th、U含量变化较大,Th含量为(55.43~1 451.47)×10-6(平均为246.20×10-6),U为(5653~57367)×10-6(平均为17930×10-6),w(Th)/w(U)=070~269,锆石显示典型岩浆成因特征[23]。23颗锆石中有1个分析点(分析点122A03)尽管获得较差的谐和年龄,但明显老于其他分析点的年龄[表1和图4(a)、(b)],应代表岩浆源区继承或捕获锆石年龄;其他22颗锆石中有19个分析点的n(206Pb)/n(238U)年龄介于275~292 Ma之间,除1个分析点谐和度较低之外,其他锆石年龄谐和度均介于90%~110%之间;另外3个分析点(分析点122A10、122A14、122A23)的n(206Pb)/n(238U)年龄为256~264 Ma(表1),其谐和度低于90%,年龄在误差范围内也低于其他19个分析点,可能是后期构造热事件干扰所致。因此,由谐和度高、年龄相对集中较一致的19个分析点计算得到n(206Pb)/n(238U)加权平均年龄为(2820±35)Ma,平均标准权重偏差(MSWD)为0.32,解释其为岩体冷凝结晶的形成年龄。
2752高地闪长玢岩中锆石以无色透明自形长柱状晶为主,长宽比为3∶1~5∶1,粒径为60~200 μm,阴极发光图像发光较弱,但多数锆石内部仍不同程度可见岩浆振荡环带[图3(b)]。所测定的20颗锆石UPb定年结果见表1。所有锆石具有较高和变化略大的Th、U含量,Th含量為(25501~1 16101)×10-6(平均为443.18×10-6),U为(304.47~793.20)×10-6(平均为443.18×10-6),w(Th)/w(U)值高(0.70~1.87),锆石也反映出典型岩浆成因特征。锆石UPb定年均获得了很高的谐和度(95%~101%)。18个年龄集中的分析点n(206Pb)/n(238U)年龄为299~313 Ma,加权平均年龄为(306.6±2.0)Ma,MSWD值为1.3;其他2个分析点中,一个分析点(分析点39A9)的n(206Pb)/n(238U)年龄为(329.6±59)Ma(表1),在高于误差范围内明显老于18个年龄集中的分析点加权平均年龄,应是早期岩浆活动年龄的记录,另一个分析点(分析点39A14)年龄误差较大,具有明显偏低的年龄(表1),显然也是后期热事件干扰的结果。18个年龄集中的分析点获得的306.6 Ma加权平均年龄与其307 Ma的交点年龄(MSWD值为002)一致,因而该年龄代表岩体冷凝结晶的形成年龄。
3.2全岩主量、微量元素特征
艾肯达坂花岗岩5件代表性样品的全岩主量、微量元素分析结果见表2。SiO2含量为647%~699%,TiO2为0.49%~0.68%,Al2O3为148%~168%,K2O为465%~487%,Na2O为394%~479%,w(Na2O)+w(K2O)值为881%~961%,CaO为123%~258%,MgO为087%~114%;里特曼指数为289~425,A/CNK值为094~102,总体上该岩体具中等偏高的Si含量、相对高K、富碱、低CaO和MgO含量,属准铝质到弱过铝质高钾钙碱性花岗岩类(图5)。
2752高地闪长玢岩5件代表性样品的SiO2含量为569%~617%,TiO2为082%~097%,Al2O3为149%~184%,K2O为536%~632%,Na2O为371%~441%,CaO为183%~478%,MgO为134%~158%,w(Na2O)+w(K2O)值为907%~1034%;A/CNK值为085~089,里特曼指數为535~592(表2)。与艾肯达坂花岗岩相比,该岩体Si含量偏低,但仍然相对高碱、富K,略高CaO、TFe2O3、MgO含量,表现为准铝质高钾钙碱性系列的闪长岩类特征(图5)。
两个岩体的稀土元素特征表现出较高的相似性,稀土元素总含量都在中等水平,轻、重稀土元素明显分馏,并具有弱到中等的负Eu异常(图6)。艾肯达坂花岗岩稀土元素总含量为(175~206)×10-6,轻、重稀土元素分馏较高,w(La)N/w(Yb)N值为1370~1610,具弱的负Eu异常(0.69~093)[图6(a)];2752高地闪长玢岩稀土元素总含量为(501~644)×10-6,轻、重稀土元素分馏相对较低,w(La)N/w(Yb)N值为606~826,具有略强的负Eu异常(0.57~0.71)[图6(a)]。两个岩体的微量元素特征也高度一致,均明显富集Rb、Th、U、K和Pb等大离子亲石元素,贫Zr、Hf等高场强元素,亏损Nb、Ta、P、Ti和Sr等元素[图6(b)]。
3.3锆石LuHf同位素特征
艾肯达坂花岗岩与2752高地闪长玢岩锆石UPb定年后,对获得谐和年龄的锆石分析点或其同结构区域进行锆石原位LuHf同位素分析(表3)。艾肯达坂花岗岩18个分析点的Hf同位素分析结果显示初始N(176Hf)/N(177Hf)值为0.282 862~0282 968,n(176Lu)/n(177Hf)值为0.000 470~0001 527,低比值说明由176Lu衰变出的177Hf极少,岩浆晶出的锆石此后很少有放射性成因Hf的积累,说明测定的N(176Hf)/N(177Hf)值代表锆石形成时的N(176Hf)/N(177Hf)值[24]。计算获得这些锆石的Hf富集系数为-099~-095,显著小于大陆镁铁质地壳Hf富集系数(-034[25]),因此,其陆壳模式年龄可以较真实地代表其源区物质从亏损地幔抽取的时间[26]。由该岩体282 Ma的形成年龄计算获得εHf(t)值为32~118,陆壳模式年龄为548~879 Ma。2752高地闪长玢岩锆石17个分析点获得的初始N(176Hf)/N(177Hf)值为0.282 863~0.282 940,n(176Lu)/n(177Hf)值为0.001 259~0.002 341,低n(176Lu)/n(177Hf)值也说明所测定的N(176Hf)/N(177Hf)值可代表锆石形成时的N(176Hf)/N(177Hf)值。依据该岩体3066 Ma的形成年龄计算获得εHf(t)值为32~117,陆壳模式年龄为572~877 Ma。
4讨论
4.1形成时代
艾肯达坂花岗岩及2752高地闪长玢岩锆石均为具岩浆韵律环带的长柱状自形晶(图3),为岩浆冷凝结晶而成。LAICPMS锆石UPb定年获得艾肯达坂花岗岩282 Ma和2752高地闪长玢岩307 Ma的形成年龄,与其形成年龄相同的浅成小岩体在西天山其他地区也有发现。达巴特铜矿区花岗斑岩形成于279 Ma[27];尼勒克地区花岗闪长斑岩形成于292 Ma[28];黑云母花岗斑岩形成于269 Ma[29];查岗诺尔智博铁矿区闪长岩脉形成于303~305 Ma[30];阿吾拉勒群吉萨依花岗斑岩形成于302 Ma[31];色勒
两个岩体均相对高K、富碱、低CaO和MgO含量,表现为准铝质到弱过铝质高钾钙碱性花岗岩类特征(图5);均相对富集Rb、Th、U、K和Pb等大离子亲石元素,贫Zr、Hf等高场强元素,明显亏损Nb、Ta、P、Ti和Sr等元素[图6(b)],具有壳源岛弧区岩浆产物的地球化学特征。两个岩体轻、重稀土元素具有中到较高的分馏[图6(a)]、弱到中等的负Eu异常,指示陆壳物质部分熔融过程中斜长石为残余相矿物或岩浆形成冷凝过程发生斜长石分离结晶。因为这些岩体发育的周边未出现更为基性的岩体,所以排除它们是更为基性岩浆发生分离结晶作用的结果。在区别分离结晶与部分熔融的La/YbLa图解中,两个岩体均呈现部分熔融演化趋势线,指示其主要为陆壳物质部分熔融所形成(图8)。
另一方面,艾肯达坂花岗岩轻、重稀土元素分馏程度较2752高地闪长玢岩更高,但负Eu异常和Sr、Ba亏损程度明显弱(图6),表明源区残余相少有或缺失富Sr的斜长石,而重稀土元素含量高的石榴石可能成为其主要残余相的矿物。熊小林等研究认为,当压力为10~15 GPa或更高(相当于33~50 km深度的角闪岩相榴辉岩过渡阶段)时,基性玄武岩部分熔融可形成贫Y(含量不高于18×10-6)、富Sr(含量高于400×10-6)的花岗质岩石[5457]。相比而言,艾肯达坂花岗岩Y含量为(18.6~20.2)×10-6,Sr为(297~491)×10-6(平均为354×10-6),较为接近上述条件下形成的花岗质岩石;而2752高地闪长玢岩则明显不同,其具有高Y含量((27.2~40.7)×10-6)和低Sr含量((182~452)×10-6,平均为254×10-6)的特征。前者极有可能形成于深度大于33 km的增厚下地壳物质的部分熔融,而后者则是深度浅于33 km正常下地壳物质部分熔融的结果。
Nb与Ta以及Zr与Hf等成对元素离子半径和电负性相近,表现出相似的地球化学性质[58],在分离结晶或部分熔融等岩浆过程中均难以造成w(Nb)/w(Ta)值和w(Zr)/w(Hf)值的明显改变,因而这些比值可有效示踪源区性质。艾肯达坂花岗岩与2752高地闪长玢岩w(Nb)/w(Ta)值和w(Zr)/w(Hf)值十分类似:前者w(Nb)/w(Ta)值为116~127,w(Zr)/w(Hf)值为411~457;后者w(Nb)/w(Ta)值为140~145,w(Zr)/w(Hf)值为408~418;它们均与大陆地壳w(Nb)/w(Ta)值(11.4)和w(Zr)/w(Hf)值(35.8)[59]相当,但明显低于原始地幔w(Nb)/w(Ta)值(17.6),高于其w(Zr)/w(Hf)值(36.3)[60],这说明两个岩体主要源自大陆地壳物质的部分熔融。
根据艾肯达坂花岗岩282 Ma和2752高地闪长玢岩体307 Ma的形成年龄获得的εHf(t)值均为正,所有点落在球粒陨石演化线之上(图9),反映它们来自相对年轻的地壳。艾肯达坂花岗岩εHf(282 Ma)值为32~118(主要为319~690),陆壳模式年龄为548~879 Ma;2752高地闪长玢岩εHf(307 Ma)值為32~117(主要为32~59),陆壳模式年龄为572~877 Ma;这证明两个岩体均源自相对年轻的新元古代陆壳物质。[KG-30x]与此类似,西天山晚石炭世以来花岗岩类也大多显示了正εHf(t)值(图9),一致表明它们的源区存在相当数量的年轻陆壳物质。值得注意的是,两个岩体中大多数锆石εHf(t)值均变化不大且相对集中,但个别锆石εHf(t)值(>11)明显高于其他锆石,且更接近于亏损地幔演化线,并与大致同期的基性侵入岩εHf(t)值相当(图9),说明岩体形成过程还有幔源物质的加入。
数据引自本文以及文献[28]、[29]、[47]、[49]和[52]
图9εHf(t)t图解
Fig.9Diagram of εHf(t)t
试验岩石学研究表明,钙碱性花岗质岩浆是大陆地壳物质在780 ℃脱水熔融形成的[5757,61]。通常情况下,大陆造山带正常地壳厚度条件下其自身放射性元素提供的热量难以达到这一温度。大陆碰撞造山带PTt轨迹计算结果指出,陆壳物质达到这一温度发生脱水熔融产生钙碱性花岗质岩浆不但需要特定的构造环境,还需持续不断热能的输入[62]。这种高温度和持续热量的供给往往是由深部幔源物质上涌所提供的。利用Zr饱和温度计算获得的艾肯达坂花岗岩锆石饱和温度为823 ℃~840 ℃,2752高地闪长玢岩锆石饱和温度为752 ℃~809 ℃,基本都超过陆壳物质发生脱水熔融形成钙碱性花岗质岩浆所需的最低温度。但2752高地闪长玢岩锆石饱和温度略低,很可能是其形成深度浅、压力较低的缘故。另外,从两个岩体的矿物组合来看,其含水矿物(如角闪石和黑云母)含量都不高,特别是艾肯达坂花岗岩长石斑晶有被熔蚀的现象,说明其很可能形成于一个相对低水高温的环境,因而需有其他热源的供给。西天山地区晚古生代在320 Ma前就出现基性岩浆活动,并一直持续到280 Ma以后(图7),艾肯达坂花岗岩和2752高地闪长玢岩也形成于这一时期。
较高的锆石饱和温度以及Hf同位素特征揭示,艾肯达坂花岗岩和2752高地闪长玢岩形成过程曾有幔源物质的贡献,说明该时期一定存在幔源基性岩浆活动为这两个岩体的产生提供了必要的热源。西天山250~330 Ma期间幔源铁镁质岩浆引发的底侵作用[13,6364]证明的确有大量幔源岩浆活动的发生。此外,西天山地区还发育大量在285~320 Ma期间与幔源岩浆作用密切相关的壳幔型花岗岩类[3738,6566],这也充分证明幔源岩浆活动诱发了大规模陆壳物质的部分熔融,并在幔源岩浆活动即将结束的后期,大规模壳幔型花岗岩浆活动即将结束时,仍持续有小规模中酸性小岩株/岩体的产生(图7)。
4.3形成构造环境
西天山地区大范围广泛出露一套以流纹岩、粗面岩、粗面安山岩、中酸性凝灰岩和少量玄武岩为主体的大哈拉军山组火山沉积岩。朱永峰等基于同位素年代学发现其主体形成于早石炭世(325~350 Ma),同时存在晚泥盆世和晚石炭世的形成年龄[14,16,4143]。夏林圻等通过详细的区域地质及地球化学特征研究,指出大哈拉军山组形成于造山后裂谷环境[2],并构成与地幔柱有关的大火成岩省[34,7,6768],但朱永峰等认为这套火山沉积岩形成于火山弧[14,16,32,6970]或弧后环境[44]。大哈拉军山组火山沉积岩与下伏地层之间存在区域性角度不整合,大哈拉军山组底部下石炭统地层由下而上呈砾岩、粗砂岩、砂岩、粉砂岩、泥岩和碳酸盐岩的充填序列;该套地层极有可能是区域挤压变形后,在裂陷拉伸背景下由陆相转为海相地层的一套沉积建造[42],因而代表了碰撞造山后、区域伸展环境下的裂谷火山沉积序列。显然,侵入于大哈拉军山组中的艾肯达坂花岗岩和2752高地闪长玢岩斜交区域构造线,岩体无任何变形,岩石具均一块状,表明其是区域挤压之后伸展背景下岩浆侵入的产物。
艾肯达坂花岗岩和2752高地闪长玢岩地球化学特征有较高的类似性。在Rb/30Hf3Ta和Y+NbRb图解中,两个岩体均落入火山弧或后碰撞区域(图10),表现出与岛弧岩浆产物有很高的地球化学亲缘性[71]。两个岩体锆石有正εHf(t)值和新元古代的陆壳模式年龄,其陆壳模式年龄明显老于形成年龄,指示其来自与弧岩浆有关的新元古代陆壳物质的部分熔融,这也证明早在新元古代天山地区就已有与板块俯冲相关的弧岩浆活动发生。尽管迄今为止在天山地区并未发现新元古代大洋岩石圈残片,并且该时期洋、陆格局也不清楚,但塔里木地块西北缘柯坪地区阿克苏群新元古代(09~10 Ga)蓝闪石片岩的发现[34],无疑表明新元古代早期确曾已有古洋盆俯冲消减的发生,伴随该过程有与弧岩浆有关的新生地壳形成,并成为西天山古生代陆壳岩浆活动的主要物源区,
因此,两个岩体表现出的弧岩浆特征只是继承了其母岩区的地球化学特征,并非代表其形成于弧岩浆的构造环境。目前,有关西天山地区南天山构造带的蛇绿岩研究显示,该带蛇绿岩主体形成于439~516 Ma[72],伴随洋壳俯冲形成的高压峰期变质年龄主要为320~400 Ma[7376],其西延至吉尔吉斯斯坦和哈萨克斯坦的南天山高压—超高压变质岩年龄也多集中于350~410 Ma[74,77],证明南天山洋盆在泥盆世已发生消减,局部可能持续到早石炭世。即便是北天山巴音沟蛇绿岩中斜长花岗岩获得325 Ma的年龄[45]指示早石炭世仍有洋盆的存在,但后期侵入该蛇绿岩中的花岗岩获得316 Ma的年龄[46]也确切地说明晚石炭世前西天山地区的洋盆均已闭合,因此,西天山晚石炭世—早二叠世期间形成的小岩体显然是西天山洋盆闭合、碰撞造山区域挤压事件后岩浆活动的产物。
图10中酸性小岩体Rb/30Hf3Ta图解和Y+NbRb图解
Fig.10Diagrams of Rb/30Hf3Ta and Y+NbRb of Intermediateacid Small Plutons
西天山晚古生代以来各类岩浆活动期次揭示,晚古生代大规模花岗岩浆活动早在360 Ma已经发生,多形成大花岗岩基,然而在320 Ma前幔源基性岩浆活动未曾出现(图7)。至310 Ma左右,花岗岩浆活动出现短暂间歇后,在西天山地区的北天山、中天山及南天山构造带均出现大规模花岗岩浆活动,同时伴有幔源基性岩浆活动的发生(图7)。这一时期形成的花岗岩无任何变形,在平面上呈圆形斜切区域构造线,侵入于早石炭世及其更老地层中,这是非挤压环境侵位的结果。很多岩体中大量出现与区域幔源基性岩浆活动同期的暗色闪长质微粒包体,指示了一期与陆壳伸展有关的壳幔岩浆作用(内部资料)。这些花岗岩体主要由钙碱性高钾钙碱性花岗岩类构成,地球化学特征呈现轻、重稀土元素中度分馏,弱到中度的负Eu异常,富集大离子亲石元素,贫高场强元素,不同程度亏损Nb、Ta、P、Ti和Sr等元素,被认为是后碰撞阶段年轻陆壳物质部分熔融形成的花岗岩类[9,37,47,78]。
在285~296 Ma以来的早二叠世,西天山大规模花岗岩浆活动明显减弱,多形成规模不大的小岩体或侵入于前二叠系地层中,或作为大复式花岗岩体晚期的产物出现。这些岩体以富钾碱长花岗岩为主[38,4851,79],并有向碱性花岗岩过渡的地球化学特征[12],预示了地壳活动性已明显减弱,陆壳物质部分熔融也相应降低,因此,形成的花岗岩除一些中酸性浅成斑岩或玢岩外,同时出现低程度部分熔融形成的碱性花岗岩或发生高度分异的富钾花岗岩类。事实上,与伸展环境有关的后碰撞晚期A2型花岗岩类早在297 Ma就已出现[9],并在280 Ma左右达到峰值[49,52,7981],此后一直持续到250 Ma的晚二叠世[82](图7)。与西天山晚石炭世开始出现的大量后碰撞环境侵入岩相对应,晚石炭世—中二叠世期间伸展拉张背景下的火山喷发作用在西天山地区也广为出现,上石炭统伊什基里克组火山岩[53]以玄武岩和流纹岩为特征,显示双峰式裂谷火山岩的成因特征[2,70,83],不整合覆盖其上的二叠世火山岩也形成于陆内伸展拉张裂谷环境[1920,33,84]。这些岩浆活动一致表明,西天山地区晚石炭世洋盆已经闭合,并转入后碰撞演化阶段,至二叠世开始由后碰撞向陆内伸展拉张过渡阶段转换。晚石炭世晚期—中二叠世西天山各类中酸性小岩体的形成正是这一阶段岩浆活动的产物,反映了深部動力学背景及构造环境的重要转折。
5结语
(1)LAICPMS锆石UPb定年分别获得西天山阿吾拉勒东南部2752高地闪长玢岩307 Ma及艾肯达坂花岗岩282 Ma的形成年龄。结合区域同期小岩体的形成,揭示西天山晚石炭世—中二叠世期间发生了规模不大的中酸性岩浆活动。
(2)艾肯达坂花岗岩和2752高地闪长玢岩中岩石无变形,呈均一块状,属高K、富碱的准铝质到弱过铝质高钾钙碱性花岗岩类,显示富集Rb、Th、U、K和Pb等大离子亲石元素,贫Zr、Hf等高场强元素,亏损Nb、Ta、P、Ti和Sr等元素,具壳源岛弧区岩浆作用的地球化学特征。两个岩体锆石具正εHf(t)值,陆壳模式年龄为新元古代,证明其主要源自新元古代新生岛弧陆壳物质;个别锆石εHf(t)值明显高,指示其有幔源岩浆活动的参与。
(3)综合分析西天山晚古生代各类岩浆作用,西天山晚石炭世—中二叠世期间形成的浅成小岩体为该时期由后碰撞向陆内伸展拉张过渡阶段岩浆活动的产物,反映西天山深部动力学背景和构造环境的重要转折。
参考文献:
References:
[1]朱志新,董连慧,王克卓,等.西天山造山带构造单元划分与构造演化[J].地质通报,2013,32(2/3):297306.
ZHU Zhixin,DONG Lianhui,WANG Kezhuo,et al.Tectonic Division and Regional Tectonic Evolution of West Tianshan Organic Belt[J].Geological Bulletin of China,2013,32(2/3):297306.
[2]夏林圻,夏祖春,徐学义,等.天山古生代洋陆转化特点的几点思考[J].西北地质,2002,35(4):920.
XIA Linqi,XIA Zuchun,XU Xueyi,et al.Some Thoughts on the Characteristics of Paleozoic Oceancontinent Transition from Tianshan Mountains[J].Northwestern Geology,2002,35(4):920.
[3]夏林圻,夏祖春,徐学义,等.天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J].西北地质,2008,41(4):168.
XIA Linqi,XIA Zuchun,XU Xueyi,et al.Petrogenesis of carboniferousEarly Permian Riftrelated Volcanic Rocks in the Tianshan and Its Neighboring Areas,Northwestern China[J].Northwestern Geology,2008,41(4):168.
[4]夏林圻,夏祖春,徐学义,等.天山石炭纪大火成岩省与地幔柱[J].地质通报,2004,23(9/10):903910.
XIA Linqi,XIA Zuchun,XU Xueyi,et al.Carboniferous Tianshan Igneous Megaprovince and Mantle Plume[J].Geological Bulletin of China,2004,23(9/10):903910.
[5]夏林圻,夏祖春,徐学义,等.天山岩浆作用[M].北京:地质出版社,2007.
XIA Linqi,XIA Zuchun,XU Xueyi,et al.Magmatism in Tianshan[M].Beijing:Geological Publishing House,2007.
[6]XIA L Q,LI X M,MA Z P,et al.Cenozoic Volcanism and Tectonic Evolution of the Tibetan Plateau[J].Gondwana Research,2011,19(4):850866.
[7]XIA L Q,XU X Y,LI X M,et al.Reassessment of Petrogenesis of CarboniferousEarly Permian Riftrelated Volcanic Rocks in the Chinese Tianshan and Its Neighboring Areas[J].Geoscience Frontiers,2012,3(4):445471.
[8]徐学义,马中平,夏祖春,等.天山中西段古生代花岗岩TIMS法锆石UPb同位素定年及岩石地球化学特征研究[J].西北地质,2006,39(1):5075.
XU Xueyi,MA Zhongping,XIA Zuchun,et al.TIMS UPb Isotopic Dating and Geochemical Characteristics of Paleozoic Granitic Rocks from the Middlewestern Section of Tianshan[J].Northwestern Geology,2006,39(1):5075.
[9]XU X Y,WANG H L,LI P,et al.Geochemistry and Geochronology of Paleozoic Intrusions in the Nalati (Narati) Area in Western Tianshan,Xinjiang,China:Implications for Paleozoic Tectonic Evolution[J].Journal of Asian Earth Sciences,2013,72:3362.
[10]LONG L L,GAO J,KLEMD R,et al.Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen: Implications for Continental Growth in the Southwestern Central Asian Orogenic Belt[J].Lithos,2011,126(3/4):321340.
[11]MA X X,SHU L S,MEERT J G,et al.The Paleozoic Evolution of Central Tianshan:Geochemical and Geochronological Evidence[J].Gondwana Research,2014,25(2):797819.
[12]MA X X,SHU L S,MEERT J G.Early Permian Slab Breakoff in the Chinese Tianshan Belt Inferred from the Postcollisional Granitoids[J].Gondwana Research,2015,27(1):228243.
[13]趙振华,王强,熊小林,等.新疆北部的两类埃达克岩[J].岩石学报,2006,22(5):12491265.
ZHAO Zhenhua,WANG Qiang,XIONG Xiaolin,et al.Two Types of Adakites in North Xinjiang,China[J].Acta Petrologica Sinica,2006,22(5):12491265.
[14]朱永峰,郭璇,周晶.新疆中天山巴仑台地区晚石炭世+εNd辉长岩体的岩石学和同位素地球化学研究[J].岩石学报,2006,22(5):11781192.
ZHU Yongfeng,GUO Xuan,ZHOU Jing.Petrology and Geochemistry of a +εNd Gabbro Body in Baluntai Region,Central Tianshan Mountains,Xinjiang[J].Acta Petrologica Sinica,2006,22(5):11781192.
[15]唐功建,王强,赵振华,等.西天山东塔尔别克金矿区安山岩LAICPMS锆石UPb年代学、元素地球化学与岩石成因[J].岩石学报,2009,25(6):13411352.
TANG Gongjian,WANG Qiang,ZHAO Zhenhua,et al.LAICPMS Zircon UPb Geochronology,Element Geochemistry and Petrogenesis of the Andesites in the Eastern Taerbieke Gold Deposit of the Western Tianshan Region[J].Acta Petrologica Sinica,2009,25(6):13411352.
[16]朱永峰,张立飞,古丽冰,等.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J].科学通报,2005,50(18):20042014.
ZHU Yongfeng,ZHANG Lifei,GU Libing,et al.The Zircon SHRIMP Chronology and Trace Element Geochemistry of the Carboniferous Volcanic Rocks in Western Tianshan Mountains[J].Chinese Science Bulletin,2005,50(18):20042014.
[17]WANG B,FAURE M,CLUZEL D,et al.Late Paleozoic Tectonic Evolution of the Northern West Chinese Tianshan Belt[J].Geodinamica Acta,2006,19(3/4):237247.
[18]ZHU Y F,GUO X,SONG B,et al.Petrology,SrNdHf Isotopic Geochemistry and Zircon Chronology of the Late Palaeozoic Volcanic Rocks in the Southwestern Tianshan Mountains,Xinjiang,NW China[J].Journal of the Geological Society,2009,166(6):10851099.
[19]陳衍景,鲍景新,张增杰,等.西天山艾肯达坂组火山岩系的元素地球化学特征和构造环境[J].矿物岩石,2004,24(3):3645.
CHEN Yanjing,BAO Jingxin,ZHANG Zengjie,et al.Tectonic Setting and Element Geochemistry of the Aikendaban Formation Volcanic Rocks in West Tianshan[J].Journal of Mineralogy and Petrology,2004,24(3):3645.
[20]陈衍景,刘玉琳,鲍景新,等.西天山艾肯达坂组火山岩系同位素定年及其构造意义[J].矿物岩石,2004,24(1):5255.
CHEN Yanjing,LIU Yulin,BAO Jingxin,et al.Isotopic Dating for the Volcanic Rocks of the Aikendaban Formation in West Tianshan,China and Its Tectonic Implication[J].Journal of Mineralogy and Petrology,2004,24(1):5255.
[21]YUAN H L,GAO S,LIU X M,et al.Accurate UPb Age and Trace Element Determinations of Zircon by Laser Ablationinductively Coupled Plasmamass Spectrometry[J].Geostandards and Geoanalytical Research,2004,28(3):353370.
[22]HU Z C,LIU Y S,GAO S,et al.Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICPMS[J].Journal of Analytical Atomic Spectrometry,2012,27(9):13911399.
[23]BELOUSOVA E,GRIFFIN W L,OREILLY S Y,et al.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J].Contributions to Mineralogy and Petrology,2002,143(5):602622.
[24]吴福元,李献华,郑永飞,等.LuHf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185220.
WU Fuyuan,LI Xianhua,ZHENG Yongfei,et al.LuHf Isotopic Systematics and Their Applications in the Petrology[J].Acta Petrologica Sinica,2007,23(2):185220.
[25]AMELIN Y,LI C S,NALDRETT A J.Geochronology of the Voiseys Bay Intrusion,Labrador,Canada,by Precise UPb Dating of Coexisting Baddeleyite,Zircon,and Apatite[J].Lithos,1999,47(1/2):3351.
[26]第五春荣,孙勇,林慈銮,等.豫西宜阳地区TTG质片麻岩锆石UPb定年和Hf同位素地质学[J].岩石学报,2007,23(2):253262.
DIWU Chunrong,SUN Yong,LIN Ciluan,et al.Zircon UPb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province,China[J].Acta Petrologica Sinica,2007,23(2):253262.
[27]张作衡,王志良,左国朝,等.西天山达巴特矿区火山岩的形成时代、构造背景及对斑岩型矿化的制约[J].地质学报,2008,82(11):14941503.
ZHANG Zuoheng,WANG Zhiliang,ZUO Guochao,et al.Ages and Tectonic Settings of the Volcanic Rocks in Dabate Ore District in West Tianshan Mountains and Their Constraints on the Porphyrytype Mineralization[J].Acta Geologica Sinica,2008,82(11):14941503.
[28]李晓英,徐学义,孙吉明,等.西天山尼勒克地区浅成花岗质侵入体的地球化学特征及形成时代[J].地质通报,2012,31(12):19391948.
LI Xiaoying,XU Xueyi,SUN Jiming,et al.Geochemistry and Dating of the Hypabyssal Granite Body in Nilka County of Western Tianshan Mountains[J].Geological Bulletin of China,2012,31(12):19391948.
[29]李寧波,牛贺才,单强,等.新疆尼勒克县圆头山后碰撞花岗斑岩的同位素年代学及地球化学特征[J].岩石学报,2013,29(10):34023412.
LI Ningbo,NIU Hecai,SHAN Qiang,et al.Zircon UPb Geochronology and Geochemistry of Postcollisional Granitic Porphyry from Yuantoushan,Nileke,Xinjiang[J].Acta Petrologica Sinica,2013,29(10):34023412.
[30]蒋宗胜,张作衡,侯可军,等.西天山查岗诺尔和智博铁矿区火山岩地球化学特征、锆石UPb年龄及地质意义[J].岩石学报,2012,28(7):20742088.
JIANG Zongsheng,ZHANG Zuoheng,HOU Kejun,et al.Geochemistry and Zircon UPb Age of Volcanic Rocks from the Chagangnuoer and Zhibo Iron Deposits,Western Tianshan,and Their Geological Significance[J].Acta Petrologica Sinica,2012,28(7):20742088.
[31]闫永红,薛春纪,张招崇,等.西天山阿吾拉勒西段群吉萨依花岗斑岩地球化学特征及其成因[J].岩石矿物学杂志,2013,32(2):139153.
YAN Yonghong,XUE Chunji,ZHANG Zhaochong,et al.Geochemistry and Genesis of the Qunjisayi Granite Porphyry in the West of Awulale Area,Western Tianshan Mountains[J].Acta Petrologica et Mineralogica,2013,32(2):139153.
[32]钱青,高俊,熊贤明,等.西天山昭苏北部石炭纪火山岩的岩石地球化学特征、成因及形成环境[J].岩石学报,2006,22(5):13071323.
QIAN Qing,GAO Jun,XIONG Xianming,et al.Petrogenesis and Tectonic Settings of Carboniferous Volcanic from North Zhaosu,Western Tianshan Mountains:Constraints from Petrology and Geochemistry[J].Acta Petrologica Sinica,2006,22(5):13071323.
[33]姬红星.新疆西天山艾肯达坂组火山岩的地球化学特征[J].物探与化探,2007,31(3):218220.
JI Hongxing.The Geochemical Characteristics of Aikendaban Group Volcanic Rocks in West Tianshan Moutains,Xinjiang[J].Geophysical and Geochemical Exploration,2007,31(3):218220.
[34]肖序常,GRAHAM S A,CARROLL A R,等.中国西部元古代蓝片岩带:世界上保存最好的前寒武纪蓝片岩[J].新疆地质,1990,8(1):1221.
XIAO Xuchang,GRAHAM S A,CARROLL A R,et al.Proterozoic Blueschist Belt in Western China:Bestdocumented Precambrian Blueschist in the World[J].Xinjiang Geology,1990,8(1):1221.
[35] 高景刚,李文渊,薛春纪,等.新疆哈勒尕提铜铁矿床的成矿年代学研究[J].矿床地质,2014,33(2):386396.
GAO Jinggang,LI Wenyuan,XUE Chunji,et al.Zircon SHRIMP UPb and Molybdenite ReOs Dating of Halegati CuFe Polymetallic Deposit in West Tianshan Mountains and Its Geological Implications[J].Mineral Deposits,2014,33(2):386396.
[36]牛贺才,单强,罗勇,等.西天山玉希莫勒盖达坂石英闪长岩的微量元素地球化学及同位素年代学研究[J].岩石学报,2010,26(10):29352945.
NIU Hecai,SHAN Qiang,LUO Yong,et al.Geochronological and Geochemical Studies on Quartz Diorite in Yuximolegai Daban,West Tianshan and Its Tectonic Implication[J].Acta Petrologica Sinica,2010,26(10):29352945.
[37]ZHANG D Y,ZHANG Z C,ENCARNACION J,et al.Petrogenesis of the Kekesai Composite Intrusion,Western Tianshan,NW China:Implications for Tectonic Evolution During Late Paleozoic Time[J].Lithos,2012,146/147:6579.
[38]王行军,王根厚,专少鹏,等.新疆和硕县包尔图一带花岗岩LAICPMS锆石UPb年龄及其地质意义[J].地质通报,2012,31(8):12511266.
WANG Xingjun,WANG Genhou,ZHUAN Shaopeng,et al.LAICPMS Zircon UPb Isotope Age of Granitoids in Baoertu Area,Hoxud Country,Xinjiang,and Its Geological Significance[J].Geological Bulletin of China,2012,31(8):12511266.
[39]韩琼,弓小平,马华东,等.西天山阿吾拉勒成矿带大哈拉军山组火山岩时空分布规律及其地质意义[J].中国地质,2015,42(3):570586.
HAN Qiong,GONG Xiaoping,MA Huadong,et al.Temporal and Spatial Distribution of Dahalajunshan Group Volcanic Rocks in the Awulale Metallogenic Belt of West Tianshan Mountains and Its Geological Significance[J].Geology in China,2015,42(3):570586.
[40]白建科,李智佩,徐学义,等.西天山早石炭世构造环境:大哈拉军山组底部沉积地层学证据[J].沉积学报,2015,33(3):459469.
BAI Jianke,LI Zhipei,XU Xueyi,et al.Tectonic Environment of Western Tianshan During the Early Carboniferous:Sedimentary and Stratigraphical Evidence from the Bottom of the Dahalajunshan Formation[J].Acta Sedimentologica Sinica,2015,33(3):459469.
[41]茹艷娇,徐学义,李智佩,等.西天山乌孙山地区大哈拉军山组火山岩LAICPMS锆石UPb年龄及其构造环境[J].地质通报,2012,31(1):5062.
RU Yanjiao,XU Xueyi,LI Zhipei,et al.LAICPMS Zircon UPb Age and Tectonic Background of the Dahalajunshan Formation Volcanic Rocks in Wusunshan Area,West Tianshan Mountains[J].Geological Bulletin of China,2012,31(1):5062.
[42]白建科,李智佩,徐学义,等.西天山乌孙山地区大哈拉军山组碎屑锆石UPb定年及其地质意义[J].中国地质,2015,42(1):8595.
BAI Jianke,LI Zhipei,XU Xueyi,et al.Detrital Zircon UPb Dating of Dahalajunshan Formation in Wusun Mountain Region,Western Tianshan and Its Geological Implications[J].Geology in China,2015,42(1):8595.
[43]周翔,余心起,王宗秀,等.西天山大哈拉军山组火山岩SHRIMP锆石UPb年龄及其构造意义[J].地质通报,2015,34(5):845860.
ZHOU Xiang,YU Xinqi,WANG Zongxiu,et al.SHRIMP Zircon UPb Geochronological and Geochemical Data of the Early Carboniferous Dahalajunshan Formation:Evidence for the Subduction Processes in Western Tianshan[J].Geological Bulletin of China,2015,34(5):845860.
[44]李继磊,钱青,高俊,等.西天山昭苏东南部阿登套地区大哈拉军山组火山岩及花岗岩侵入体的地球化学特征、时代和构造环境[J].岩石学报,2010,26(10):29132924.
LI Jilei,QIAN Qing,GAO Jun,et al.Geochemistry,Zircon UPb Ages and Tectonic Settings of the Dahalajunshan Volcanics and Granitic Intrusions from the Adengtao Area in the Southeast Zhaosu,Western Tianshan Mountains[J].Acta Petrologica Sinica,2010,26(10):29132924.
[45]徐学义,马中平,夏祖春,等.天山石炭—二叠纪后碰撞花岗岩的Nd、Sr、Pb同位素源区示踪[J].西北地质,2005,38(2):118.
XU Xueyi,MA Zhongping,XIA Zuchun,et al.Discussion of the Sources and Characteristics on Sr,Nd,Pb Isotopes of the Carboniferous to Permian Postcollision Granites from
Tianshan[J].Northwestern Geology,2005,38(2):118.
[46]HAN B F,GUO Z J,ZHANG Z C,et al.Age,Geochemistry and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone,Western China[J].Geological Society of America Bulletin,2010,122(3/4):627640.
[47]李晓英.西天山阿吾拉勒地区花岗岩及形成构造环境研究[D].西安:长安大学,2013.
LI Xiaoying.Research of Granite Formation and Tectonic Environment of the Awulale Region,Western Tianshan Mountain,China[D].Xian:Changan University,2013.
[48]劉志强,韩宝福,季建清,等.新疆阿拉套山东部后碰撞岩浆活动的时代、地球化学性质及其对陆壳垂向增长的意义[J].岩石学报,2005,21(3):623639.
LIU Zhiqiang,HAN Baofu,JI Jianqing,et al.Ages and Geochemistry of the Postcollisional Granitic Rocks from Eastern Alataw Mountains, Xinjiang,and Implications for Vertical Crustal Growth[J].Acta Petrologica Sinica,2005,21(3):623639.
[49]唐功建,陈海红,王强,等.西天山达巴特A型花岗岩的形成时代与构造背景[J].岩石学报,2008,24(5):947958.
TANG Gongjian,CHEN Haihong,WANG Qiang,et al.Geochronological Age and Tectonic Background of the Dabate Atype Granite Pluton in the West Tianshan[J].Acta Petrologica Sinica,2008,24(5):947958.
[50]LONG L L,GAO J,WANG J B,et al.Geochemistry and SHRIMP Zircon UPb Age of Postcollisional Granites in the Southwest Tianshan Orogenic Belt of China:Examples from the Heiyingshan and Laohutai Plutons[J].Acta Geologica Sinica:English Edition,2010,82(2):415424.
[51]LI N B,NIU H C,SHAN Q,et al.Two Episodes of Late Paleozoic AType Magmatism in the Qunjisayi Area,Western Tianshan:Petrogenesis and Tectonic Implications[J].Journal of Asian Earth Sciences,2015,113:238253.
[52]刘春花,吴才来,郜源红,等.南天山拜城县波孜果尔A型花岗岩类锆石UPb定年及其LuHf同位素组成[J].岩石学报,2014,30(6):15951614.
LIU Chunhua,WU Cailai,GAO Yuanhong,et al.Zircon LAICPMS UPb Dating and LuHf Isotopic System of Atype Granitoids in South Tianshan,Baicheng Country,Xinjiang[J].Acta Petrologica Sinica,2014,30(6):15951614.
[53]李潇林斌,弓小平,马华东,等.西天山式可布台铁矿火山岩地球化学特征、成岩时代厘定及其构造意义[J].中国地质,2014,41(6):17911804.
LI Xiaolinbin,GONG Xiaoping,MA Huadong,et al.Geochemical Characteristics and Petrogenic Age of Volcanic Rocks in the Shikebutai Iron Deposit of West Tianshan Mountains[J].Geology in China,2014,41(6):17911804.
[54]熊小林,蔡志勇,牛贺才,等.东天山晚古生代埃达克岩成因及铜金成矿意义[J].岩石学报,2005,21(3):967976.
XIONG Xiaolin,CAI Zhiyong,NIU Hecai,et al.The Late Paleozoic Adakites in Eastern Tianshan Area and Their Metallogenetic Significance[J].Acta Petrologica Sinica,2005,21(3):967976.
[55]DEFANT M J,DRUMMOND M S.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J].Nature,1990,347:662665.
[56]RAPP R P,WATSON E B,MILLER C F.Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites[J].Precambrian Research,1991,51(1/2/3/4):125.
[57]RAPP R P,WATSON E B.Dehydration Melting of Metabasalt at 832 kbar:Implications for Continental Growth and Crustmantle Recycling[J].Journal of Petrology,1995,36(4):891931.
[58]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992.
LI Changnian.Petrology of Trace Elements in the Igneous Rocks[M].Wuhan:China University of Geosciences Press,1992.
[59]RUDNICK R L,GAO S.Composition of the Continental Crust[J].Treatise on Geochemistry,2014,4:151.
[60]HOFMANN A W.Chemical Differentiation of the Earth:The Relationship Between Mantle,Continental Crust,and Oceanic Crust[J].Earth and Planetary Science Letters,1988,90(3):297314.
[61]PATINO DOUCE A E.Generation of Metaluminous Atype Granites by Lowpressure Melting of Calcalkaline Granitoids[J].Geology,1997,25(8):743746.
[62]PATINO DOUCE A E,HARRIS N.Experimental Constraints on Himalayan Anatexis[J].Journal of Petrology,1998,39(4):689710.
[63]熊小林,赵振华,白正华,等.西天山阿吾拉勒adakite型钠质中酸性岩及地壳垂向增生[J].科学通报,2001,46(4):281287.
XIONG Xiaolin,ZHAO Zhenhua,BAI Zhenghua,et al.Adakitetype Intermediateacidic Rocks and Vertical Crustal Hyperplasia in the Western Tianshan Mountains[J].Chinese Science Bulletin,2001,46(4):281287.
[64]熊小林,趙振华,白正华,等.西天山阿吾拉勒埃达克质岩石成因:Nd和Sr同位素组成的限制[J].岩石学报,2001,17(4):514522.
XIONG Xiaolin,ZHAO Zhenhua,BAI Zhenghua,et al.Origin of Awulale Adakitic Sodiumrich Rocks in Western Tianshan:Constraints for Nd and Sr Isotopic Compositions[J].Acta Petrologica Sinica,2001,17(4):514522.
[65]TANG G J,WANG Q,WYMAN D A,et al.Metasomatized Lithosphereasthenosphere Interaction During Slab Rollback:Evidence from Late Carboniferous Gabbros in the Luotuogou Area,Central Tianshan[J].Lithos,2012,155:6780.
[66]TANG G J,WANG Q,WYMAN D A,et al.Petrogenesis of Goldmineralized Magmatic Rocks of the Taerbieke Area,Northwestern Tianshan (Western China):Constraints from Geochronology,Geochemistry and SrNdPbHf Isotopic Compositions[J].Journal of Asian Earth Sciences,2013,74:113128.
[67]夏林圻,夏祖春,徐學义,等.天山石炭纪大火成岩省与地幔柱[J].地质通报,2004,23(9/10):903910.
XIA Linqi,XIA Zuchun,XU Xueyi,et al.Carboniferous Tianshan Igneous Megaprovince and Mantle Plume[J].Geological Bulletin of China,2004,23(9/10):903910.
[68]XIA L Q,XIA Z C,XU X Y,et al.Relative Contributions of Crust and Mantle to the Generation of the Tianshan Carboniferous Riftrelated Basic Lavas,Northwestern China[J].Journal of Asian Earth Sciences,2008,31(4/5/6):357378.
[69]姜常义,吴文奎,张学仁,等.从岛弧向裂谷的变迁:来自阿吾拉勒地区火山岩的证据[J].岩石矿物学杂志,1995,14(4):289300.
JIANG Changyi,WU Wenkui,ZHANG Xueren,et al.The Change from Island Arc to Rift Valley:Evidence from Volcanic Rocks in Awulale Area[J].Acta Petrologica et Mineralogica,1995,14(4):289300.
[70]李永军,胡克亮,周继兵,等.西天山伊什基里克山早石炭世火山岩浆作用及其成矿[J].地球科学,2010,35(2):235244.
LI Yongjun,HU Keliang,ZHOU Jibing,et al.Early Carboniferous Volcanomagmatism and Related Mineralization in Yishijilike Mountain,Western T