胜利油田永8断块沙二段辫状河三角洲前缘储层构型特征

王冠民 李明鹏



摘 要:目前,中国辫状河三角洲油气储层的开发很多已经进入高含水期,但对辫状河三角洲储层构型的研究并不多,影响了该类储层剩余油的挖潜。以胜利油田永8断块沙二段辫状河三角洲厚层砂体为研究对象,充分利用岩芯、测井、地震和开发资料,通过隔夹层划分,将主力层段划分为5级界面限制的三角洲前缘复合沉积体和4级界面限制的单一三角洲前缘沉积体。单一三角洲前缘沉积体包括水下分流河道、河道周缘溢岸砂体、河口坝主体、河口坝周缘、分流间湾等构型单元。通过综合利用曲线形态差异、砂体侧向厚度变化、砂体间泥质沉积、隔夹层数目差异等进行砂体边界与叠置关系的划分,确定了辫状河三角洲前缘单一沉积体的平面和剖面构型样式,揭示了单一沉积体各构型单元逐层进积的基本过程,明确了该区辫状河三角洲具有河窄坝宽、河薄坝厚、河顺坝横的特点。研究区沙二段辫状河三角洲河口坝宽度为分流河道宽度的2.23~8.95倍,河口坝厚度为分流河道厚度的1.25~2.50倍。
关键词:辫状河三角洲;储层;构型;进积体;分流河道;河口坝;胜利油田;东营凹陷
中图分类号:P618.13;TE122.2+1 文献标志码:A
Reservoir Architecture Characteristics of Braided River Delta
Front in the Second Member of Shahejie Formation,
Yong8 Fault Block, Shengli Oilfield
WANG Guan-min1, LI Ming-peng1,2
(1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China;
2. Langfang Branch of PetroChina Research Institute of Petroleum Exploration and
Development, Langfang 065007, Hebei, China)
Abstract: Lots of petroleum exploration for braided river delta reservoirs has entered high water cut stage in China, but the study on reservoir architecture of braided river delta is few, so that it affects the potential of digging residual oil for this kind of reservoir. Taking the thick sandbody in the second member of Shahejie Formation of Yong8 fault block, Shengli oilfield as a research object, according to the cores, well logging, seismic and development data, the main interval was divided into compound sedimentary body of delta front with the limitation of the fifth surface and single sedimentary body of delta front with the limitation of the fourth surface by interbed. The single sedimentary body of delta front includes architecture elements such as underwater distributary channel, overbank sandbody of channel periphery, main mouth bar, periphery of mouth bar and interdistributary bay, etc. The boundary of sandbody and superimposed relationship were divided according to the difference of well logging curve, lateral change of sandbody thickness, argillaceous sediment between sandbodies, and the number difference of interbeds; the architecture style of single sedimentary body of braided river delta front both in plane and profile was confirmed; the basic process of layer-by-layer progradation for each architecture unit of single sedimentary body was explained; the characteristics of braided river delta in this block were discussed, including the channel being narrow, thin and straight, and the mouth bar being wide, thick and lateral. The width of mouth bar for braided river delta in the second member of Shahejie Formation of the block is 2.23-8.95 times of that of distributary channel, and the thickness is 1.25-2.50 times of that of the distributary channel.
Key words: braided river delta; reservoir; architecture; prograding body; distributary channel; mouth bar; Shengli oilfield; Dongying sag
0 引 言
目前,中国东部勘探程度较高的老油田大都进入开发中后期,存在含水饱和度上升、水淹严重、剩余油分散、产量下降、采收率低等问题[1-13]。据统计,经过一次、二次采油后,目前仅能采出地下总储量的30%左右[1-2];在全世界范围内,大约有20%的可动石油储量因储层的垂向和平面非均质性而滞留地下无法采出[3]。三角洲前缘砂体是最重要的油气藏赋存部位[14-17],中国三角洲相储层剩余油约占碎屑岩储层剩余油的27.6%[1]。通过储层构型研究能够精细刻画储层内部优势渗流通道、隔夹层分布,是研究三角洲砂体剩余油分布、预测及水淹规律,提高油气采收率的有效方法。
笔者对胜利油田永8断块沙二下亚段辫状河三角洲储层逐级进行构型界面和构型单元划分。在各级构型界面测井响应特征及构型单元内部砂体展布特征分析基础上,明确各构型单元剖面、平面边界划分方法及组合方式,并进一步统计各构型单元的规模参数,分析其定量关系。
1 研究区概况
永8断块地处胜利油田下属的新立村油田南部,构造位置在东营凹陷中央隆起带东端,东为青坨子凸起南端,南邻广利油田,西为辛镇构造。该断块为一受南、北边界断层控制,并被一组SN向断层切割的复杂断块油气藏。永8断块北高南低,地层倾角在6°~10°,构造落差约100 m,主要含油层系为沙二段第5~8砂层组,油层埋深1 840~2 100 m,含油面积1.2 km2,探明地质储量1 214×104 t。该断块是胜利油田储量丰度最高的断块之一[18-21]。
永8断块自1998年投入试采至今,经历多个开发阶段,多次进行层系细分及开发方案调整,目前综合含水率(体积比)为89.2%,但采出程度仅为13.5%。在开发中主要存在层系适用性差、层间干扰严重、储层非均质性强、剩余油采出程度低、油水关系复杂、含水率高及水淹严重等问题。通过对研究区储层构型单元的特征、类型、空间分布等进行研究,可以明确各小层的空间联通性及剩余油分布,对提高驱油效率具有重要意义。
2 构型界面分级
鉴于测井资料精度、井网密度和实际生产的可操作性,本次研究参考Miall河流相构型界面分级方法,在高分辨率层序地层学理论及沉积旋回控制下,对应开发层系[22-25],确定研究区第5~7砂层组的构型界面划分方案(表1):第6级为多期三角洲前缘叠置体界面;第5级为单期三角洲前缘复合沉积体界面;第4级为单一三角洲前缘沉积体界面。3级构型单元限于井网密度,难以进一步刻画,且对辫状河三角洲厚油层的开发方案调整意义不大,故此次未作进一步研究。
3 构型界面划分对比
胜利油田永8断块沙二下亚段为浅水条件沉积,影响沉积旋回的主要因素为基准面的周期性升降。基准面下降,碎屑物质进积,三角洲前缘砂体发育;基准面上升,三角洲大面积被浅水覆盖,主要发育湖相泥质沉积。因此,三角洲的沉积旋回性比较清楚,表现为明显的砂泥岩互层(图1)。
对于6级和5级构型界面,标志层非常清楚,主要为稳定分布的泥岩,测井曲线明显回返,自然电位
表1 沙二段辫状河三角洲前缘构型层次分级
Tab.1 Architecture Hierarchy Classification of Braided River Delta Front in the Second Member of Shahejie Formation
γGR为自然伽马;VSP为自然电位;RRLML为微梯度电阻率;RRNML为微电位电阻率;ΔtAC为声波时差;测井对象为XLA8-7井
图1 第5~7砂层组构型单元综合分析
Fig.1 Synthetical Analysis of Architecture Elements in the Fifth to Seventh Sand Layers
曲线接近泥岩基线,自然伽马值高,微电极曲线无幅度差,一般为稳定的隔层,较容易划分对比。而4级界面主要表现为泥质夹层,局部为钙质夹层,其中泥质夹层一般局部发育,在测井曲线表现出回返,但不如5级、6级构型界面明显,声波时差升高。此外,钙质夹层主要由钙质砂岩组成,横向对比性差,典型测井识别标志为尖峰状微电极曲线和低声波时差,微电极曲线表现为值高且幅度差小,声波时差曲线主要分布于200~250 μs·m-1。
单一三角洲前缘沉积体是由洪水携带的粗碎屑物质在水动力减弱条件下发生卸载而沉积的,因此,在测井曲线上比较光滑。而在平水期,则主要沉积细粒物质,越靠近湖泊中央,沉积物粒度越细,物性越差,在测井曲线上表现为越靠近湖泊中心,回返越严重。在6级和5级构型界面划分的基础上,根据层次划分理论[26-30],通过精细井间对比,开展4级构型界面划分,在小层内揭示出一系列单一三角洲前缘沉积体(图2)。
图2 第5砂层组2小层构型单元划分
Fig.2 Division of Architecture Elements in the Second Sublayer of the Fifth Sand Layer
这些单一三角洲前缘沉积体在空间上呈现逐层进积的特征(图3),早期厚层砂体分布于研究区东北部,中期分布于中部和西南部,晚期主要分布于西南部,砂岩等厚变化反映了三角洲前缘从东北部向西南部渐次推进的过程。
4 构型单元特征
根据岩芯、测井曲线,在研究区各单一三角洲前缘沉积体中可识别出水下分流河道、河道周缘溢岸砂体、河口坝主体、河口坝周缘、分流间湾等构型单元。
水下分流河道主要沉积中、细砂岩,以细砂岩为主,整体为向上变细的正粒序。粒度概率曲线为两段式,以跳跃组分和悬浮组分为主,河道底部可见冲刷面,局部具有砾石沉积。测井曲线以大幅箱形、钟形、梯形为主,微电极曲线向上幅度差降低(表2)。
河道周缘溢岸砂体岩性主要为细砂岩、粉砂岩、泥质粉砂岩。该砂体粒度细,厚度较薄,物性相对分流河道和河口坝砂体较差。其测井曲线形态为扁钟形、齿化钟形、光滑梭形、齿化梭形(表2)。
河口坝主体岩性以细砂岩为主,少量中砂岩、粉砂岩,正粒序、均匀粒序、反粒序均可见,受砂体沉积部位影响,靠近分流河道末端部位为正粒序,靠近前三角洲部位为反粒序。该砂体粒度概率曲线为三段式,在河口坝底部可见螺等生物碎屑,平行层理、斜层理、交错层理发育。其测井曲线形态为钟形、箱形、漏斗-箱形、梯形(表2)。
河口坝周缘是河口坝主体边缘粒度较细且厚度较薄的部分,岩性为细砂岩、粉砂岩,发育有平行层理、波状层理。其测井曲线为漏斗形、齿化漏斗形、梭形(表2)。
分流间湾为水下分流河道之间相对低洼的地区,以泥质沉积为主,含少量粉砂岩和细砂岩,具水平层理和透镜状层理,可见生物钻孔。其测井曲线主要为小幅指形(表2)。
5 构型单元边界划分与组合样式
构型单元划分是在沉积模式及地质知识库指导下,根据层次分析约束,由构型界面控制完成。开展构型单元精细划分,有利于理清地下优势渗流通道以及剩余油的分布,因此,单一成因砂体的边界划分和组合样式是关键。
图层从下到上分别对应早期、中期和晚期
图3 第5砂层组2小层构型单元砂体厚度变化特征
Fig.3 Change Characteristics of Architecture Element Sand Thickness in the Second Sublayer of the Fifth Sand Layer
5.1 利用Google Earth确定辫状河三角洲地质知识库
丰富的储层地质知识库是进行精细储层构型解剖和建模的基础[30]。在进行构型分析时,充分参考了部分学者根据密井网解剖、露头剖面、现代沉积考察、沉积模拟试验等方法所建立的地质知识库[31-33]。此外,本次研究还充分利用Google Earth软件,测量现代辫状河三角洲地表分流河道的河谷长度、河道长度、河道宽度等参数,并计算分流河道弯曲指数。在统计的156条分流河道中,辫状河三角洲分流河道弯曲度均在1.0~1.3之间;分流河道的宽度小于100 m的占77%,在100~500 m之间的占16%,大于500 m的仅占不到7%。统计结果表明,辫状河三角洲分流河道具有河道直且宽度窄的特点。李国栋等研究认为,单一分流河道宽度很少大于300 m[34-35],而河口坝规模通常较大,长宽均可达数千米。 上述认识对单一三角洲前缘沉积体储层构型单元划分起到了重要的指导作用。
5.2 单成因砂体剖面边界划分与组合
在研究区砂体横向精细对比基础上,借鉴已有河道单砂体边界的划分方法[36-37],总结研究区沙二段辫状河三角洲单成因砂体的边界划分方案。
(1)曲线形态差异。不同成因砂体[图4(a)]、不同期次沉积的相同成因砂体[图4(b)]由于碎屑物质性质与沉积时水动力条件存在差异,导致其在测井响应上存在差异,利用这种差异可进行单成因砂体边界的识别。
(2)砂体侧向厚度变化。分流河道砂体剖面具有“顶平底凸”的特点,而河口坝具有“底平顶凸”的特点,两者从砂体中央向边缘均具有由厚变薄的特
表2 沙二段构型单元测井响应特征
Tab.2 Well Logging Response Characteristics of Architecture Elements in the Second Member of Shahejie Formation
征,因此,当砂体厚度出现“厚—薄—厚”的变化特征时,往往为两期沉积[图4(c)]。
(3)砂体间泥质沉积。分流河道间的道间泥和河口坝间的坝间泥沉积[图4(d)]是区分单一分流河道砂体和单一河口坝砂体的有效标志。
(4)隔夹层数目差异。同一小层内,不同井之间隔夹层数目不同,反映不同期次单成因砂体的叠置与拼接[图4(e)]。
5.3 构型单元平面展布与组合
在沉积规律控制下,以单井构型单元分析为立足点,以砂岩等厚图为参考,以剖面单成因砂体边界识别为基础,根据单成因砂体的测井曲线形态以及边界划分方案,由点到线、由线到面进行单一三角洲前缘沉积体各构型单元的平面展布分析。
以第5砂层组某4级构型单元为例,砂体具有东北厚、西南薄的特点。砂体从XLA8-9井到XLA8-11井具有“厚—薄—厚”的变化特征,为两期单一三角洲前缘沉积体侧向拼接的产物。从图5可以看出,在XLA8X69井存在河口坝A由XLA8CX58井—XLA8-51井—XLA8X69井—XLA8-17井构型单元连井剖面图从沉积末期的顶部泥岩,河口坝B与河口坝A在边部存在部分拼接叠置,比如XLA8X69井在河口坝A顶部泥岩之上沉积河口坝B砂体。
在上述方法指导下,可以进一步揭示单一三角洲前缘沉积体各构型单元的平面展布,将同一单砂层不同期次砂体在平面上的叠置关系划分出来。根据单砂层的剖面和平面构型图(图6),不同期次砂体平面构型单元的分布规律为:单一三角洲前缘沉积体一般具有河窄坝宽、河薄坝厚、河顺坝横的特点,其他构型单元围绕分流河道与河口坝分布。
图4 沙二段单成因砂体边界识别标志
Fig.4 Boundary Identification of Single Sandbody in the Second Member of Shahejie Formation
图5 第5砂层组1小层两期河口坝的关系
Fig.5 Relationship Between Two Mouth Bars in the First Sublayer of the Fifth Sand Layer
图6 第5砂层组2小层辫状河三角洲前缘砂体构型单元分布
Fig.6 Distribution of Architecture Elements of Sandbody from Braided River Delta Front
in the Second Sublayer of the Fifth Sand Layer
6 沙二段辫状河三角洲构型单元定量化表征
根据本次构型单元划分结果,尝试对研究区单一成因砂体开展定量分析研究,试图揭示研究区沙二段辫状河三角洲各构型单元的量化特征。
6.1 分流河道定量分析
研究区单一分流河道[图7(a)]厚度在1~6 m之间,厚度在1.5~4.5 m之间的分流河道占81.2%。单一分流河道宽度范围在160~430 m之间,91%分流河道宽度小于300 m,40.1%的宽度小于200 m。分流河道宽厚比在33~200之间,宽厚比在50~150之间的占73%。
图7 单砂体厚度与宽度的关系
Fig.7 Relationship of Single Sandbody Between Thickness and Width
6.2 河口坝定量分析
研究区单一河口坝[图7(b)]厚度在1.80~7.75 m之间,其中小于7 m的占91%,小于5 m的占71%,小于3 m的占12.5%。单一河口坝宽度在450~1 700 m之间,其中500~1 500 m之间的占87.5%。河口坝宽厚比为95~580,其中宽厚比为100~200的占42%,宽厚比为200~300的占29.2%,宽厚比大于300的不足21%。
6.3 分流河道与河口坝规模之间关系
研究区沙二段辫状河三角洲前缘主要构型单元分流河道和河口坝在宽度、厚度之间的相关性不甚明显(图7),推测其与研究区古湖水大面积偏浅以及三角洲辫状河道常不稳定进积有关。古湖盆水体较浅,使得单一三角洲进积体的沉积厚度较薄,单一河口坝最厚仅为7.75 m,且侧向上的厚度相对比较稳定(图2~5)。因为河道稳定性的差异,所以河口坝发育规模也不稳定,即当河道位置比较稳定时,前方河口坝的发育规模也就偏大,当河道位置不稳定时,迁移改道比较频繁,前方发育的河口坝规模也就变小。
统计结果显示:河口坝厚度与分流河道厚度之比在1.25~2.50之间,分布于1.25~2.00之间的约占80%[图8(a)];河口坝宽度与河道宽度的比值在2.23~8.95之间,变化范围大,在3~6之间的约占75%[图8(b)]。二者具有较好的相关性。
图8 河口坝与分流河道厚度之比以及宽度之比的分布
Fig.8 Distributions of the Ratios of Thickness and Width Between Mouth Bar and Distributary Channel
7 结 语
(1)胜利油田永8断块沙二段砂体厚度变化特征表明,4级构型界面控制下的单一三角洲前缘沉积体在空间上呈现逐层进积的特征,从东北部向西南部逐渐推进。
(2)综合岩芯、测井等资料,在辫状河三角洲前缘识别出水下分流河道、河道周缘溢岸砂体、河口坝主体、河口坝周缘、分流间湾等构型单元。
(3)综合利用曲线形态差异、砂体侧向厚度变化、砂体间泥质沉积、隔夹层数目差异等方法,进行单成因砂体剖面边界划分,并与平面构型单元划分相结合进行构型单元边界划分。结果表明:辫状河三角洲前缘主要构型单元水下分流河道和河口坝具有河窄坝宽、河薄坝厚、河顺坝横的特点。
(4)辫状河三角洲分流河道厚度与宽度、河口坝厚度与宽度之间的相关性不明显,但分流河道厚度与河口坝厚度、分流河道宽度与河口坝宽度之间具有较好的相关性。河口坝厚度为分流河道厚度的1.25~2.50倍,河口坝宽度为分流河道宽度的2.23~8.95倍,这与研究区偏浅水的辫状河三角洲沉积特点是相符的。
参考文献:
References:
[1] 刘宝珺,谢 俊,张金亮.我国剩余油技术研究现状与进展[J].西北地质,2004,37(4):1-6.
LIU Bao-jun,XIE Jun,ZHANG Jin-liang.Present Situation and Advance of Remaining Oil Research Technology in China[J].Northwestern Geology,2004,37(4):1-6.
[2] 林承焰,余成林,董春梅,等.老油田剩余油分布:水下分流河道岔道口剩余油富集[J].石油学报,2011,32(5):829-835.
LIN Cheng-yan,YU Cheng-lin,DONG Chun-mei,et al.Remaining Oils Distribution in Old Oilfields:Enrichment of Remaining Oils in Underwater Distributary Channel Crotches[J].Acta Petrolei Sinica,2011,32(5):829-835.
[3] 于兴河,王德发.陆相断陷盆地三角洲相构型要素及其储层地质模型[J].地质论评,1997,43(3):225-231.
YU Xing-he,WANG De-fa.The Architectural Elements of the Deltaic System in the Terrestrial Faulted Basin and the Significance of Its Reservoir Geological Model[J].Geological Review,1997,43(3):225-231.
[4] 陈 莉,芦凤明,范志勇.大港油田官80断块辫状河储层构型表征[J].大庆石油学院学报,2012,36(2):71-76,90.
CHEN Li,LU Feng-ming,FAN Zhi-yong.The Characterization of Braided River Reservoir Configuration in 80-fault-block Dagang Oil Field[J].Journal of Daqing Petroleum Institute,2012,36(2):71-76,90.
[5] 封从军,鲍志东,杨 玲,等.三角洲前缘水下分流河道储集层构型及剩余油分布[J].石油勘探与开发,2014,41(3):323-329.
FENG Cong-jun,BAO Zhi-dong,YANG Ling,et al. Reservoir Architecture and Remaining Oil Distribution of Deltaic Front Underwater Distributary Channel[J].Petroleum Exploration and Development,2014,41(3):323-329.
[6] 林 煜,吴胜和,岳大力,等.扇三角洲前缘储层构型精细解剖:以辽河油田曙2-6-6区块杜家台油层为例[J].天然气地球科学,2013,24(2):335-344.
LIN Yu,WU Sheng-he,YUE Da-li,et al.Fine Anatomizing Reservoir Architecture of Fan-delta Front: A Case Study on Dujiatai Reservoir in Shu2-6-6 Block, Liaohe Oilfield[J].Natural Gas Geoscience,2013,24(2):335-344.
[7] 封从军,鲍志东,代春明,等.三角洲前缘水下分流河道单砂体叠置机理及对剩余油的控制:以扶余油田J19区块泉头组四段为例[J].石油与天然气地质,2015,36(1):128-135.
FENG Cong-jun,BAO Zhi-dong,DAI Chun-ming,et al.Superimposition Patterns of Underwater Distributary Channel Sands in Deltaic Front and Its Control on Remaining Oil Distribution:A Case Study from K1q4 in J19, Fuyu Oilfield[J].Oil and Gas Geology,2015,36(1):128-135.
[8] 蒋 平,吕明胜,王国亭.基于储层构型的流动单元划分:以扶余油田东5-9区块扶杨油层为例[J].石油实验地质,2013,35(2):213-219.
JIANG Ping,LU Ming-sheng,WANG Guo-ting.Flow Unit Division Based on Reservoir Architecture:Taking Fuyu-Yangdachengzi Formation in Blocks Dong5-9 of Fuyu Oilfield as an Example[J].Petroleum Geology and Experiment,2013,35(2):213-219.
[9] 熊光勤,刘 丽.基于储层构型的流动单元划分及对开发的影响[J].西南石油大学学报:自然科学版,2014,36(3):107-114.
XIONG Guang-qin,LIU Li.Flow Units Classification Based on Reservoir Architecture and Its Influence on Reservoir Development[J].Journal of Southwest Petroleum University:Science and Technology Edition,2014,36(3):107-114.
[10] 郭 平,景莎莎,彭彩珍.气藏提高采收率技术及其对策[J].天然气工业,2014,34(2):44-58.
GUO Ping,JING Sha-sha,PENG Cai-zhen.Technology and Countermeasures for Gas Recovery Enhancement[J].Natural Gas Industry,2014,34(2):44-58.
[11] 彭 松,郭 平.缝洞型碳酸盐岩凝析气藏注水开发物理模拟研究[J].石油实验地质,2014,36(5):645-649.
PENG Song,GUO Ping.Physical Simulation of Exploiting Fractured-vuggy Carbonate Gas Condensate Reservoirs by Water Injection[J].Petroleum Geology and Experiment,2014,36(5):645-649.
[12] 余成林,国殿斌,熊运斌,等.厚油层内部夹层特征及在剩余油挖潜中的应用[J].地球科学与环境学报,2012,34(1):35-39.
YU Cheng-lin,GUO Dian-bin,XIONG Yun-bin,et al.Characteristics of Interbeds in Thick Reservoir and Application in Potential Tapping of Residual Oil[J].Journal of Earth Sciences and Environment,2012,34(1):35-39.
[13] 程 倩,李曦鹏,刘中春,等.缝洞型油藏剩余油的主要存在形式分析[J].西南石油大学学报:自然科学版,2013,35(4):18-24.
CHENG Qian,LI Xi-peng,LIU Zhong-chun,et al.Ana-lysis of Major Occurrence Modes of Remaining Oil in Karstic-fracture Reservoirs[J].Journal of Southwest Petroleum University:Science and Technology Edition,2013,35(4):18-24.
[14] 田景春,陈高武,窦伟坦,等.湖泊三角洲前缘砂体成因组合形式和分布规律:以鄂尔多斯盆地姬塬白豹地区三叠系延长组为例[J].成都理工大学学报:自然科学版,2004,31(6):636-640.
TIAN Jing-chun,CHEN Gao-wu,DOU Wei-tan,et al.Origin and Association Types of Lake Delta Front Sandstones and Their Distribution Patterns of Triassic Yanchang Formation in Ordos Basin,China[J].Journal of Chengdu University of Technology:Science and Technology Edition,2004,31(6):636-640.
[15] 刘自亮.三角洲前缘储集砂体的成因组合与分布规律:以松辽盆地大老爷府地区白垩系泉头组四段为例[J].沉积学报,2009,27(1):32-40.
LIU Zi-liang.Delta-front Sandbody Genetic Assemblages and Their Distribution Patterns of the 4th Member of Quantou Formation in Dalaoyefu Oilfield, Southern Songliao Basin,China[J].Acta Sedimentologica Sinica,2009,27(1):32-40.
[16] 杜 民,苏俊青,陆永潮,等.歧口凹陷歧深地区沙三段沉积体系演化特征及沉积模式[J].地学前缘,2013,20(5):139-148.
DU Min,SU Jun-qing,LU Yong-chao,et al.Sedimentary Evolution Characteristics and Sedimentary Model of the Third Member of Shahejie Formation in Qishen Area of Qikou Sag[J].Earth Science Frontiers,2013,20(5):139-148.
[17] 王 黎,王果寿,谢锐杰,等.苏北盆地溱潼凹陷俞垛—华庄地区沉积微相类型及特征[J].石油实验地质,2014,36(1):51-55.
WANG Li,WANG Guo-shou,XIE Rui-jie,et al.Sedimentary Microfacies Types and Features in Yuduo-Huazhuang Area,Qingtong Sag,Northern Jiangsu Basin[J].Petroleum Geology and Experiment,2014,36(1):51-55.
[18] 王 庆,王德山,孙宝财,等.永8断块出砂预测及防砂技术的应用[J].断块油气田,2002,9(2):74-76.
WANG Qing,WANG De-shan,SUN Bao-cai,et al.Sand Production Forecast and Application of Sand Control Techniques in Yong8 Fault Block[J].Fault-block Oil and Gas Field,2002,9(2):74-76.
[19] 李恒清,杨少春,路智勇.油气充注方式对油藏内油水分布特征的影响:以东营凹陷永8断块油藏为例[J].油气地质与采收率,2012,19(2):9-11,15.
LI Heng-qing,YANG Shao-chun,LU Zhi-yong.Effects of Hydrocarbon Infilling on Distribution of Oil and Water in Reservoir:Case of Yong8,Dongying Depression[J].Petroleum Geology and Recovery Efficiency,2012,19(2):9-11,15.
[20] 田 飞,金 强,王端平,等.东营凹陷永8断块断层调节带及其对油气分布的控制作用[J].高校地质学报,2012,18(2):358-364.
TIAN Fei,JIN Qiang,WANG Duan-ping,et al.Fault Accommodation Zones and Their Controlling Effects on Hydrocarbon Distribution in Yong8 Fault Block,Dongying Sag[J].Geological Journal of China University,2012,18(2):358-364.
[21] 王守岭.永8疏松砂岩稠油油藏提高采收率技术研究[D].东营:中国石油大学,2005.
WANG Shou-ling.EOR Technology Research on Unconsolidated Sand Heavy Oil Reservoir of Yong8 Block[D].Dongying:China University of Petroleum,2005.
[22] MIALL A D.Architectural-elements Analysis:A New Method of Facies Analysis Applied to Fluvial Deposits[J].Earth-science Reviews,1985,22:261-308.
[23] MIALL A D.Reconstructing the Architecture and Sequence Stratigraphy of the Preserved Fluvial Record as a Tool for Reservoir Development:A Reality Check[J].AAPG Bulletin,2006,90(7):989-1002.
[24] 何文祥,吴胜和,唐义疆,等.河口坝砂体构型精细解剖[J].石油勘探与开发,2005,32(5):42-46.
HE Wen-xiang,WU Sheng-he,TANG Yi-jiang,et al.Detailed Architecture Analyses of Debouch Bar in Shengtuo Oilfield,Jiyang Depression[J].Petroleum Exploration and Development,2005,32(5):42-46.
[25] 陈欢庆,赵应成,舒治睿,等.储层构型研究进展[J].特种油气藏,2013,20(5):7-13.
CHEN Huan-qing,ZHAO Ying-cheng,SHU Zhi-rui,et al.Advances in Reservoir Architecture Research[J].Special Oil and Gas Reservoirs,2013,20(5):7-13.
[26] 张昌民.储层研究中的层次分析法[J].石油与天然气地质,1992,13(3):344-350.
ZHANG Chang-min.Hierarchy Analysis in Reservoir Researches[J].Oil and Gas Geology,1992,13(3):344-350.
[27] 张昌民,尹太举,张尚锋,等.泥质隔层的层次分析:以双河油田为例[J].石油学报,2004,25(3):48-52.
ZHANG Chang-min,YIN Tai-ju,ZHANG Shang-feng,et al.Hierarchy Analysis of Mudstone Barriers in Shuang-he Oilfield[J].Acta Petrolei Sinica,2004,25(3):48-52.
[28] 赵翰卿,付志国,吕晓光.储层层次分析和模式预测方法[J].大庆石油地质与开发,2004,23(5):74-77.
ZHAO Han-qing,FU Zhi-guo,LU Xiao-guang.Reservoir Type Analysis and Model Prediction Description Method[J].Petroleum Geology and Oilfield Development in Daqing,2004,23(5):74-77.
[29] 吴胜和,岳大力,刘建民,等.地下古河道储层构型的层次建模研究[J].中国科学:D辑,地球科学,2008,38(增1):111-121.
WU Sheng-he,YUE Da-li,LIU Jian-min,et al.Hierachy Modeling Researching of Reservoir Architecture of River Reservoir[J].Science in China:Series D,Earth Sciences,2008,38(S1):111-121.
[30] 单敬福,李占东,李浮萍,等.一种厘定复合辫状河道砂体期次的新方法[J].天然气工业,2015,35(5):8-14.
SHAN Jing-fu,LI Zhan-dong,LI Fu-ping,et al.A New Method for Determining the Phases of Composite Braided River Channel Sand Bodies[J].Natural Gas Industry,2015,35(5):8-14.
[31] 陈 程,孙义梅,贾爱林.扇三角洲前缘地质知识库的建立及应用[J].石油学报,2006,27(2):53-57.
CHEN Cheng,SUN Yi-mei,JIA Ai-lin.Development and Application of Geological Knowledge Database for Fan-delta Front in the Dense Spacing Area[J].Acta Petrolei Sinica,2006,27(2):53-57.
[32] 尹太举,张昌民,樊中海,等.双河油田井下地质知识库的建立[J].石油勘探与开发,1997,24(6):95-98,120.
YIN Tai-ju,ZHANG Chang-min,FAN Zhong-hai,et al.Founding Subsurface Geological Data Bank for Shuanghe Oil Field[J].Petroleum Exploration and Development,1997,24(6):95-98,120.
[33] 石书缘,胡素云,冯文杰,等.基于Google Earth软件建立曲流河地质知识库[J].沉积学报,2012,30(5):868-878.
SHI Shu-yuan,HU Su-yun,FENG Wen-jie,et al.Building Geological Knowledge Database Based on Google Earth Software[J].Acta Sedimentologica Sinica,2012,30(5):868-878.
[34] 李国栋,严 科,宁士华.水下分流河道储层内部结构表征:以胜坨油田沙二段81层为例[J].油气地质与采收率,2013,20(1):28-31.
LI Guo-dong,YAN Ke,NING Shi-hua.Inner Architecture Characterization of Underwater Distributary Channel:Case of Es281 Sand Unit of Shengtuo Oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(1):28-31.
[35] 何宇航,于开春.分流平原相复合砂体单一河道识别及效果分析[J].大庆石油地质与开发,2005,24(2):17-19.
HE Yu-hang,YU Kai-chun.Recognition and Its Effect Analysis of Single River Channel in Composite Sand Body with Distributary Plain Facies[J].Petroleum Geology and Oilfield Development in Daqing,2005,24(2):17-19.
[36] 赵小庆,鲍志东,刘宗飞,等.河控三角洲水下分流河道砂体储集层构型精细分析:以扶余油田探51区块为例[J].石油勘探与开发,2013,40(2):181-187.
ZHAO Xiao-qing,BAO Zhi-dong,LIU Zong-fei,et al.An In-depth Analysis of Reservoir Architecture of Underwater Distributary Channel Sand Bodies in a River Dominated Delta:A Case Study of T51 Block,Fuyu Oilfield[J].Petroleum Exploration and Development,2013,40(2):181-187.
[37] 陈清华,曾 明,章凤奇,等.河流相储层单一河道的识别及其对油田开发的意义[J].油气地质与采收率,2004,11(3):11-15.
CHEN Qing-hua,ZENG Ming,ZHANG Feng-qi,et al.Identification of Single Channel in Fluvial Reservoir and Its Significance to the Oil Field Development[J].Petroleum Geology and Recovery Efficiency,2004,11(3):11-15.