智慧工厂的信息物理融合系统体系结构设计

虞文进 黎勇 徐元根 王军



摘 要: 分析了CPS的概念、基本功能和特性,针对工厂的实际情况,提出一种CPS五层体系结构,包括泛在感知层、互联网络层、语义信息层、模型计算层、服务代理层。并对各个层次的关键技术和结构进行详细设计。通过一个卷烟工厂落地应用实例,证明了体系结构符合工厂的信息化水平和应用现状,对工厂走向智慧化起到基础性支撑作用。
关键词: 信息物理融合系统; 体系结构; 智慧工厂; 卷烟
中图分类号: TN98?34; TP399 文献标识码: A 文章编号: 1004?373X(2017)05?0151?04
Abstract: The concept, basic function and characteristics of the cyber?physical system (CPS) are analyzed. According the practical situation of the factory, a five?layer architecture of CPS is proposed, including the perception layer, network layer, semantic information layer, model computing layer and service agent layer. The key technology and structure of each layer were designed in detail. It is proved that the architecture conforms with the informatization level and application status of the factory with an application example of the cigarette factory, and plays a basic supporting function for the construction of the smart factory.
Keywords: cyber?physical system; architecture; smart factory; cigarette
0 引 言
信息物理融合系统(Cyber?Physical System,CPS)是最近几年出现的一个新概念,是指计算和物理要素之间紧密结合与协作的系统[1]。有文献指出,CPS的影响将会远远超越20世纪的IT革命,就像Internet改变了人与人交互的方式一样,CPS的出现将改变人与物理世界交互的方式[2]。CPS一经出现便立即引起各国的重视。美国2007年的研究中便将CPS列入重要领域[3],德国将CPS作为工业4.0的核心技术之一[4]。我国863技术也于2010年开展CPS的相关研究[3]。
CPS的落地应用与研究是按行业开展的,具有明显的领域相关(Domain?Specific)特征[3]。文献[5]描述了CPS在电力领域的应用,文献[6]描述了CPS在航空航天领域的应用,文献[7]描述了CPS在医疗领域的应用,文献[8]描述了CPS在交通领域的应用,但其在制造领域的应用研究较为少见。
本文对CPS体系结构和适用于智慧工厂的系统特性进行研究与分析,给出了CPS五层体系结构框架设计,并应用于实际案例。
1 CPS概述
1.1 CPS定义
CPS是通过计算(Computation)、通信(Communication)与控制(Control)技术的有机深度融合,实现计算资源与物理资源紧密结合与协调的下一代智能系统。在微观上,CPS通过在物理系统中嵌入计算与通信内核实现计算进程与物理进程的一体化。计算进程与物理进程通过反馈循环方式相互影响,实现嵌入式计算机与网络对物理进程可靠、实时和高效的监测、协调与控制。在宏观上,CPS是由运行在不同时间和空间范围的分布式、异步的异构系统组成的动态混合系统,包括感知、决策和控制等各种不同类型的资源和可编程组件。各个子系统之间通过有线或无线通信技术,依托网络基础设施相互协调工作,实现对物理与工程系统的实时感知、远程协调、精确的动态控制和信息服务[3]。一般来说,开展智能化设备研究及开发多采用微观描述,而对诸如生产、交通这样的系统性工程多采用宏观描述。
1.2 CPS在智慧工厂中的地位
基于工业4.0的智慧工厂是以全面感知的CPS系统为基础构建,如图1所示。CPS将融合物联网与服务网,是智慧工厂的基础及核心技术之一。文献[9]给出了智慧工厂实现的五大关键因素,但同时指出最为基本的是建立在CPS之上。
1.3 智慧工厂环境下CPS特性要求
智慧工厂是数字化工厂之后新一代的制造模式,包括多种核心特征,具体如下:
智慧工厂的异构性:智慧工厂将包括多种控制系统、智能装备和传感设备。作为智慧工厂基础的CPS应当采用开放的工业标准,集成许多功能与结构各异的子系统,各个子系统之间通过有线或无线的通信方式相互协调工作。
智慧工厂的实时性:智慧工厂必须对工厂实时的事件做出正确、合理的反应。要求CPS系统基于事件驱动机制,具有强实时特征和时间全局一致性。
智慧工廠的数据驱动:数据驱动是新一代工厂区别于传统工厂的本质特征。要实现工业4.0提出的三个维度数据驱动流程,在底层落地需要CPS体现以数据为中心的特征要求。
智慧工厂的模型驱动:工厂数字模型是智慧工厂数据驱动的内在动力,体现物理模型、逻辑模型、资源模型等相关内容。CPS也必须是该模型的承载平台和运行环境,要求具备全局一致的虚拟模型。
智慧工厂的工业特征:作为制造工厂,现实要求的高度安全性、高度可靠性、领域相关性都是对CPS的要求。
2 CPS体系结构设计
2.1 CPS体系结构
CPS体系结构是CPS的核心技术,是CPS的骨架和基础。文献[10]给出一套CPS结构体系的设计,并将其应用在智能交通领域。分析认为,这种层次结构表达的概念是清晰的,但过于粗略,细节描述不够,不利于后期的实施。本文在结合国内外大量研究成果的基础上,结合制造工厂的实际情况,提出一套符合现实应用的五层CPS体系结构,如图2所示。
2.2 泛在感知层
泛在感知层是实现深度嵌入到制造全流程而设计的,通过感知节点实现。一个典型的感知节点结构如图3所示,包括软件、硬件两大部分。其中硬件包括与物理对象相一致的传感器、执行单元和对应的驱动装置。软件包括传感器数据处理模块、执行单元的控制模块,节点自身的计算模块(包括缓存、地址管理等功能),以及与网络层进行通信的模块。一个感知节点应当还包括一个能够全局同步的本地时钟,满足CPS所要求的时间一致性。
针对工厂的物理对象,感知节点需实现 “人、机、料、法、环、测、时间、空间”等八大物理要素的数字化感知。
人:采用移动互联技术,结合RFID,NFC等近场通信技术,实现人与系统的对接。
机:设备采用统一的资产代码,主要是利用二维码和RFID电子标签。
料:针对连续生产过程,采用温度计、水分仪、皮带秤表征物料特性。
法:结合生产规范要求,建立各个工序的工艺采集点,建设车间集控系统为超级节点。
环:采用无线组网技术,如Zigbee协议、WiFi协议实现全厂动能及环境的采集与计量。
测:构建超级节点,实现实验室数据采集、综合测试台数据采集。
时间:建立全厂统一的时间服务器,同步各个采集点的时钟。
空间:建立全厂采集点地址及命名字典。有条件的工厂建议采用IPv6协议。
2.3 互联网络层
CPS的异构性包括网络的异构及应用的异构。互联网络层将泛在感知层的大量异构感知节点实现互联互通,并支持感知节点之间的互操作,支持M2M(设备到设备)的通信。当前工厂的网络环境,绝大多数采用TCP作为传输层通信协议。但众所周知,TCP协议是一个非实时的协议,需要在语义信息层实现自定义的会话协议,或针对实时数据采用UDP协议。
2.4 语义信息层
CPS是以数据为中心,工厂的数据分为测量数据和业务单据数据。对于实时测量数据,采用OPC统一架构(OPC?UA)协议作为语义层协议。对于业务单据数据,采用自定义XML结构描述。XML文档的内容和结构完全分离、互操作性强、规范统一、支持多种编码及可扩展性的特点[11]。
工厂生产信息模型符合ISA95标准给出描述[12],只是在实例化过程中增加具体生产工厂的特殊属性。图4所示为针对一般工厂抽象形成的核心生产信息模型,包括生产能力模型、产品定义模型、生产信息模型。该模型将实现全局一致性的视图,支持MES系统、MES系统与自动化系统的集成、MES系统与PDM系统和ERP系统的集成(智慧工厂的三个集成)。通过该模型使CPS成为以数据为中心的系统。
2.5 模型计算层
物理与信息的融合过程,核心是通过在CPS系统中嵌入物理对象的模型来实现(有些研究称之为数字孪生体)。这个模型包括物理设备对象模型(物理模型)以及物理设备对象在生产过程中表现出来的服务逻辑模型构成。模型计算层除了管理这两大模型之外,还包括一个高可靠的模型引擎,实现CPS特性给出的事件驱动要求,如图5所示。
物理模型:工厂设备一般组织成分层形式,包括工厂(Plant)、车间(Area)、工段(Cell)、设备(Unit)四个层次[12],这是一个面向对象的模型库。每个层次的设备对象中嵌入感知节点及对应的感知数据。
逻辑模型:逻辑模型是表征物理模型在生产过程中提供的服务以及制造过程的核心流程管控,包括生产操作模型、质量管理模型、维护操作模型、库存操作模型[10]。
模型引擎:模型引擎是一个基于SOA架构的计算环境,包括运行服务管理、流程引擎、安全管理、服务管理、服务及接口协议、物理模型管理。
2.6 服务代理层
CPS与智慧工厂服务网之间的连接是通过制造服务代理层实现的,这是一个典型的SOA与多Agent环境。同时,该层也实现CPS与异构应用系统之间的连接。
工业4.0背景下智慧工厂的业务应用将呈现App化的特征。一个典型的App将满足工厂管理的某一个领域的功能要求。但这些单一业务需要流程的集成,共同实现以产品为中心的某一特定的生产任务,比如生产换模过程。每一个App通过它的代理服务接入到CPS模型引擎中,如图6所示。模型引擎具有一个Agent容器管理功能,实现Agent服务的发现、注册、变更及有效性检验,符合CPS高度自主性的特性。
3 典型应用
卷烟工业企业在整体制造业信息化中具有较高水平。宁波卷烟厂在全行业较早开展信息化建设,基本完成了数字工厂建设[13]。通过分析智慧工厂的核心要求,明确智慧工厂建设的核心是在工厂导入CPS系统,实现物联网与服务网的融合。基于CPS系统,重新构建工厂一体化核心数据平台,重新梳理三项集成(工厂与集团的集成、研发与生产的集成、制造与服务的集成)。宁波卷烟厂CPS实施技术路线如图7所示。
工厂利用新引进设备的机会,完成了智慧工厂所需的物联网环境建设。自动化系统采用OPC?UA协议共享CPS全局一致的实时数据库系统。同时,根据智慧工厂的业务要求增加少量的無线感知节点,主要应用于设备状态监测领域。在建模及模型引擎方面,采用西门子公司的Simatic IT建模平台实现模型在线运行。而服务代理则采用工厂已建成的SOA总线平台(IBM产品Message Broker)实现模型驱动与服务组件的集成。服务集成所用的协议为广泛采用的WebServices标准。通过优化及完善以MES系统为核心的工厂应用系统,完善App形式的业务管理功能。
基于CPS的生产信息监控界面如图8所示。通过导入CPS系统,一是实现了全局一致的核心数据库;二是实现生产资源的对象模型,建立透明工厂;三是逻辑模型支持生产管控流程的灵活修改,提高生产柔性;四是生产服务代理化,实现即插即用;五是实现控制层与管理层的深度融合,提升管理精细化水平。
4 结 语
CPS是智慧工厂的核心技术。本文从CPS国内外的研究现状出发,结合CPS的基本功能及特性要求,提出一种应用于工厂的五层CPS体系结构,包括泛在感知层、互联网络层、语义信息层、模型计算层、服务代理层。该体系自下而上实现了物理对象、生产信息、生产对象模型以及服务模型的抽象。最后,本文给出了一个卷烟工厂的实施案例,列出了每一层所采用的技术路线。应用案例表明,本文提出的五层CPS体系结构符合卷烟工厂的信息化水平及应用需求,对智慧卷烟工厂的建设能起到基础性支撑。
参考文献
[1] Wikipedia. Cyber?physical system [EB/OL]. [2015?08?08]. http://en.wikipedia.org/wiki/Cyber?physical_system.
[2] RAJKUMAR R, LEE I, SHA L, et al. Cyber?physical systems: the next computing revolution [C]// Proceedings of 2010 IEEE Design Automation Conference. [S.l.]: IEEE, 2010: 731?736.
[3] 黎作鹏,张天驰,张菁.信息物理融合系统(CPS)研究综述[J].计算机科学,2011,38(9):25?31.
[4] 工业4.0工作组.德国工业4.0战略计划实施建议(上)[J].机械工程导报,2013(7):23?33.
[5] TANEJA J, KATZ R, CULLER D. Defining CPS challenges in a sustainable electricity grid [C]// Proceedings of 2012 IEEE/ACM Third International Conference on Cyber?Physical Systems. Berkeley: IEEE, 2012: 119?128.
[6] 杨孟飞,王磊,顾斌,等.CPS在航天器控制系统中的应用分析[J].空间控制技术与应用,2012,38(5):8?13.
[7] LEE I, SOKOLSKY O, CHEN S, et al. Challenges and research directions in medical cyber?physical systems [J]. Proceedings of the IEEE, 2012, 100(1): 75?90.
[8] CARTWRIGHT R, CHENG A, HUDAK P, et al. Cyber?physical challenges in transportation system design [C]// Proceedings of 2008 National Workshop for Research on High?confidence Transportation Cyber?Physical Systems: Automotive, Aviation and Rail. Washington D. C.: National Science Foundation, 2008: 220?224.
[9] 张曙.工业4.0和智能制造[J].机械设计与制造工程,2014,43(8):1?5.
[10] 陈丽娜,王小乐,邓苏.CPS体系结构设计[J].计算机科学,2011,38(5):295?300.
[11] 张晶,张云生.基于XML的实时数据一致性描述与查询处理[J].计算机工程,2007,33(10):52?54.
[12] 中华人民共和国国家质量监督检验检疫总局.GB/T 20720.1?2006企业控制系统集成(第1部分:模型和术语)[S].北京:中华人民共和国国家质量监督检验检疫总局,2007.
[13] 虞文进,黎勇,王文娟,等.卷烟工厂信息化建设体系设计[J].工业控制计算机,2014(3):159?161.