大别造山带宿松地体早白垩世中—基性脉岩地球化学特征

谢清陆李双庆贺剑峰++陈福坤



文章编号:16726561(2016)06083514
摘要:大别造山带是三叠纪华南陆块俯冲于华北陆块之下所形成的陆陆碰撞造山带,在早白垩世发育强烈的碰撞后岩浆作用。侵位于宿松群高压变质岩石中的大量中—基性脉岩是认识大陆板块深俯冲过程的壳幔相互作用和折返过程中岩石圈构造响应的重要载体之一。报道了有关宿松地体中—基性脉岩的岩石学和地球化学研究结果,探讨了其成因特征和源区演化。结果表明:中—基性脉岩总体具有安粗岩的性质,主量元素含量变化较大,SiO2质量分数介于4845%~6137%,偏基性脉岩具有偏高的MgO、Cr、Ni含量;所有脉岩样品的微量元素和稀土元素组成均一,大离子亲石元素和轻稀土元素相对富集,重稀土元素和高场强元素亏损;脉岩样品都具有相对富集的同位素组成特征,包括较高的初始N(87Sr)/N(86Sr)值(0.706 3~0.710 9),较低的εNd(t)值 (-22.7~-15.1);初始Pb同位素比值也相对偏低,初始N(206Pb)/N(204Pb)值为15.858 5~17196 7,初始N(207Pb)/N(204Pb)值为15.207 2~15.332 1,初始N(208Pb)/N(204Pb)值为36.814 4~37.633 8, 这些特征暗示岩浆源区具有扬子板块下地壳物质的显著贡献。总之,中—基性脉岩具有高Sr含量和低Y、Yb含量,与埃达克质岩组成类似,可能指示宿松地体早白垩世中—基性脉岩的形成与增厚的造山带岩石圈拆沉及其和地幔的相互作用有关。
关键词:地球化学;中—基性脉岩;早白垩世;SrNdPb同位素;壳幔相互作用;拆沉作用;宿松地体;扬子板块;大别造山带
中图分类号:P588.13文献标志码:A
Geochemical Characteristics of Early Cretaceous Intermediatemafic Dykes in Susong Terrene of Dabie Orogenic Belt
XIE Qinglu1,2, LI Shuangqing1, HE Jianfeng1, CHEN Fukun1
(1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China;
2. Department of Navigation, Bengbu Naval Petty Officer Academy, Bengbu 233012, Anhui, China)
Abstract: Dabie orogenic belt is a typical continental collision belt by Triassic subduction and collision between Yangtze Block and North China Block. It is characterized by not only the largest exposure of Triassic ultrahighpressure metamorphic rocks in the world, but also the most profound occurrence of postcollisional Cretaceous igneous rocks. Early Cretaceous intermediatemafic dykes, intruding into highpressure metamorphic rocks of Susong terrene of Dabie orogenic belt, are important for understanding the process of mantlecrustal interaction during the deep subduction of the continental block and the tectonic respondence in the uplift. The petrological and geochemical characteristics of these intermediatemafic dykes were presented, and the petrogenesis and geological implications were discussed. The results show that the intermediatemafic dykes are mainly latite in composition; they have varied compositions in major elements (e.g., mass fractions of SiO2 are 48.45%61.37%), and basic dyke samples show relatively high mass fractions of MgO, Cr and Ni; all the dyke samples display homogeneous characteristics in trace element and rare earth element compositions, such as enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), and obvious depletion in high field strength elements (HFSE, e.g., Nb, Zr and Ti) and heavy rare earth elements (HREE). Isotopic compositions indicate that magma sources of the intermediatemafic dykes are relatively enriched with the characteristics of initial N(87Sr)/N(86Sr)(0706 30710 9) and εNd(t) (-227-151); the initial Pb isotopic ratios are low with N(206Pb)/N(204Pb) of 15858 517196 7, N(207Pb)/N(204Pb)of 15207 215332 1, and N(208Pb)/N(204Pb) of 36814 437633 8, indicating the contribution of lower crustal materials of Yangtze Block. In general, the Early Cretaceous intermediatemafic dykes in Susong terrene have high Sr, low Y and Yb contents, being comparable to typical adakite, implying that the generation of these dykes would be related to the delamination of thickened orogenic lower crust and the relative interaction with upper mantle.
Key words: geochemistry; intermediatemafic dyke; Early Cretaceous; SrNdPb isotope; curstmantle interaction; delamination; Susong terrene; Yangtze Block; Dabie orogenic belt
0引言
脉岩的广泛出露代表地壳强烈伸展减薄的构造环境,对研究大陆动力学背景具有重要指示意义,特别是其中的基性脉岩包含丰富的幔源信息,可用来反演壳幔演化、岩石圈形成、源区示踪等。大别造山带是扬子板块与华北板块在三叠纪俯冲碰撞形成的,碰撞后在早白垩世发生了大规模的岩浆活动,并发育有大量中酸性及基性侵入体。前人分别从矿物学、年代学、岩石学和地球化学等方面对这些侵入体进行了研究,并取得了许多重要成果[111],但关于这些碰撞后岩浆岩的形成机制和岩浆来源尚有很大争论:Jahn等认为其是俯冲的大陆地壳与亏损地幔发生混合作用的产物[1];赵子福等认为是俯冲的扬子板块陆下岩石圈地幔部分熔融的产物[5]; 王世明等认为是扬子板块俯冲中下陆壳和华北岩石圈地幔混合的产物[9];Xu等认为与下地壳的拆沉有关[11]。关于南大别宿松地体侵入体的研究相对较少,本文对南大别宿松地体两个剖面共17个中—基性脉岩样品开展岩石学和地球化学研究,探讨其成因特征及岩浆源区演化,进而揭示并完善该地区的中生代基性岩形成时间和地球化学特征变化规律。
1地质背景和样品描述
大别—苏鲁造山带不仅是世界上出露面积最大的高压—超高压变质带,而且也是陆陆碰撞之后早白垩世岩浆活动最为强烈的地区之一[12]。大别造山带北接华北克拉通,南为扬子板块,东侧为郯城—庐江断裂带(该断裂带使苏鲁造山带与大别造山带之间向北位移约500 km),西侧为商城—麻城断裂带(该断裂带使得西侧的红安造山带与之区分开来)。大别造山带由北到南以4个断裂带为界大致可以分为5个变质带[图1(a)]:北淮阳低温/低压片岩相变质带、北大别高温/超高压麻粒岩相带、中大别中温/超高压榴辉岩相带、南大别低温/超高压榴辉岩相带、宿松低温/高压蓝片岩带[13]。在大别造山带的各个变质相带都有中生代碰撞后岩浆岩出露,碰撞后岩浆岩主要形成于111~143 Ma,峰期在125~130 Ma。这些早白垩世中酸性、基性侵入体分布较广,与晚中生代中酸性岩体密切共生,中—基性侵入体种类繁多,包括闪长质脉岩、辉绿(玢)岩、辉长岩等。脉岩走向以NEE向为主,部分呈NW向,在同位素组成上具有相似性,都表现出富集的特征[1115],表明该期岩浆事件既有大规模地壳部分熔融,也有深部地幔部分熔融。
图件引自文献[9]和[14],有所修改宿松地体位于扬子板块北缘,出露于南大别低温榴辉岩带和前陆褶皱冲断带之间,与南大别低温榴辉岩带以太湖—马庙断裂为分界线,形成于新元古代扬子板块北缘大规模拉张的陆内裂谷环境下。在大别造山带的各个变质相带都有中生代碰撞后岩浆岩出露,尤其以北大别和北淮阳的岩浆作用最为强烈,中生代岩浆岩主体为花岗岩,基性岩分布规模有限[15],相对于北大别地区,南大别宿松地体中—基性脉岩较少,只有零星分布。本文样品采自宿松地体小尧家—向坪村—小龙山剖面和王塘湾—安坪—焦耳岭剖面[图1(b)],代表性岩石的野外露头和显微照片见图2。这些中—基性脉岩倾角较陡,与中酸性岩体密切共生,切割穿插围岩岩体,界线清晰,围岩主要为片麻状花岗岩。中—基性脉岩样品大多数粒度均匀,为中细粒结构,具有颜色较深的冷凝边,主要矿物为斜长石、角闪石、黑云母等,部分样品还含有少量辉石。单条脉岩宽度为10 cm到数米不等,局部地区脉体分布比较密集,大约10 m长的剖面可见3、4条脉体,显示强烈的伸展张裂作用。由于这些脉岩样品的结构及矿物组成类似,本文以样品SS1401和SS1412为代表具体描述其岩石学特征。所有样品的采样位置及岩性特征见表1。
样品SS1401采自安徽省太湖县小龙山,主要矿物为斜长石(体积分数为40%~45%)、角闪石(25%~35%)、黑云母(约5%)等[图2(d)],角闪石呈他形,粒度较小,分布均匀。脉岩野外产状为块状,结构均一,呈灰黑色,围岩为片麻岩,约35 m长剖面至少分布有4条脉岩,脉岩最小为05 m,大的有3~4 m。
样品SS1412采自安徽省宿松县王塘湾,镜下具有辉长结构,主要矿物为斜长石(体积分数为35%~40%)、角闪石(20%~35%)、辉石(约7%)、黑云母(约5%)等[图2(c)]。有些辉石蚀变严重,部分蚀变为绿泥石,在颗粒边缘仍可见未发生蚀变的辉石残晶。脉岩野外产状围岩为花岗片麻岩,剖面至少分布有4条基性脉岩,其中2条较宽(约1 m),还有一条约01 m。粒度特征为部分细粒和部分粗粒,脉岩呈灰黑色。
2分析方法
全岩粉末样品的制作在河北省廊坊市科大岩石矿物分选技术服务有限公司进行。选取约5 kg的岩石样品经去污、风干,破碎至直径为05~10 cm的碎块后,挑选无包裹体和脉体且成分均一的小碎块,采用无污染玛瑙球磨技术将上述碎块研磨至粒径不高于200目(孔径为0074 mm)的岩石粉末,以备进行元素和同位素分析。
2.1主量元素和微量元素
全岩主量元素分析由广州澳实分析检测有限公司分析完成。全岩微量元素分析在中国科学技术大学中国科学院壳幔物质与环境重点实验室完成。准确称取50 mg的全岩粉末,用蒸馏纯化的HFHNO3溶液在聚四氟乙烯钢套内胆瓶中180 ℃条件下加热7 d分解岩石样品;蒸干溶液后,再加入50% HNO3溶液加热溶解样品1 d;在ICPMS测试之前,溶解后的样品加入1%HNO3溶液稀释定容,并加入内标元素Rh。相对标准偏差在5%之内。具体分析测试流程见文献[16]。
2.2SrNdPb同位素
全岩SrNdPb同位素分析在中国科学技术大学中国科学院壳幔物质与环境重点实验室完成。称取约100 mg样品,置于Teflon溶样罐中,加入约3 mL HF溶液和2、3滴HClO4溶液,轻微摇晃溶样罐使样品和酸混合均匀,加盖并拧紧,于电热板上加热至约125 ℃,放置7 d以溶解样品;样品溶解后,首先进行Pb同位素分离,采用装有AG1x8树脂的阳离子交换柱;分离Sr和稀土元素(REE)时,采用装有AG50Wx8阳离子交换树脂的交换柱;最后进行Nd分离和纯化,采用充填有HDEHP萃淋树脂的离子交换柱。同位素比值测量在德国Finnigan公司生产的MAT262型固体源热电离质谱计(TIMS)上完成。详细化学流程和同位素比值测试见文献[17]~[19]。
3结果分析
3.1主量元素和微量元素组成
对宿松地体17个中—基性脉岩样品进行主量元素和微量元素分析,结果见表2。样品烧失量为123%~570%。为了能够系统地对比中—基性脉岩的组成特点,减少蚀变的影响,将烧失量(LOI)扣除后,元素含量(质量分数,下同)重新计算并归一至100%。宿松地体中—基性脉岩SiO2含量为4845%~6137%(表2)。
由于Na2O和K2O等活动性元素可能受到蚀变作用的影响,所以传统的TAS 图解不适合用于样品分类,本文采用Zr/TiNb/Y图解(图3)。
从图3可以看出,中—基性脉岩总体上落入安粗岩的范围,其他主要元素含量也显示较大的变化范围,MgO、Fe2OT3、CaO和Na2O含量分别为298%~914%、497%~923%、193%~785%和281%~498%。同时,这些样品具有较高的Al2O3含量(1243%~1604%) 以及偏碱性特征(w(Na2O)+w(K2O)=497%~812%)。Mg#值介于52~66,其中大多数样品的Mg#值低于60,暗示其可能经历了不同程度的岩浆结晶分异[20],或者受到不同程度的地壳混染。哈克图解(图4)显示,MgO含量与Cr、Ni含量具有正相关关系,而与Al2O3、K2O含量呈负相关关系,暗示在成岩过程中存在橄榄石、单斜辉石等矿物的分离结晶作用[2223]。
在原始地幔标准化微量元素蛛网图[图5(a)]中,宿松地体中—基性脉岩富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损高场强元素(HFSE, 如Nb、Zr、Hf、Ti),与岛弧型火山岩微量元素蛛网图类似。中—基性脉岩样品稀土元素总含量变化范围较大((163~314)×10-6),各样品球粒陨石标准化稀土元素配分模式比较一致[图5(b)],具有强烈的轻稀土元素富集、重稀土元素(HREE)
亏损的右倾型特征;轻、重稀土元素分异明显(w(La)N /w(Yb)N=18~49),显示其具有埃达克质岩的特征;Eu异常不明显(Eu/Eu*值为0.880~1022),表明早期的结晶矿物没有或很少含斜长石。微量元素含量变化范围较大,可能是结晶分异演化的结果,Cr、Ni、Ba、Rb和Sr含量分别为(83~708)×10-6、(29~184)×10-6、(866~3 604)×10-6、(34~91)×10-6和(589~1 082)×10-6。
3.2SrNdPb同位素组成
宿松地体中—基性脉岩样品SrNdPb同位素分析结果见表3。谢清陆等得到这些中—基性脉岩侵位时代约为130 Ma[2526],因此,计算得到相关脉岩样品初始Sr同位素比值((N(87Sr)/N(86Sr))i)为0706 3~0710 9,其中样品SS1404和SS1405的(N(87Sr)/N(86Sr))i值明显偏大,分别为0710 0和0710 9;脉岩样品的Nd同位素相对富集,εNd(t)值显著偏低(-227~-151) (图6),Nd模式年龄(19~33 Ga)显示其具有古元古代甚至太古代的特征。
碰撞后镁铁质岩数据引自文献[1]、[2]、[15]、[27]和[28];崆岭片麻岩、北大别片麻岩、扬子板块中生代基性岩引自文献[2]和[29]~[36];N(87Sr)/N(86Sr)(t)为年龄t对应的Sr同位素比值,t=130 Ma
图6(N(87Sr)/N(86Sr))(t)εNd(t)图解
Fig.6Diagram of (N(87Sr)/N(86Sr))(t)εNd(t)
宿松地体中—基性脉岩样品初始Pb同位素比值(N(206Pb)/N(204Pb))i值为15.858 5~17.196 7,(N(207Pb)/N(204Pb))i值为15.207 2~15332 1,(N(208Pb)/N(204Pb))i值为36814 4~37633 8。本文研究的宿松地体样品与北大别基性脉岩的Pb同位素组成[27]基本一致。在(N(207Pb)/N(204Pb))i(N(206Pb)/N(204Pb))i图解[图7(a)]上,宿松地体中—基性脉岩样品落在地球参考线(Geochron)左侧,北半球参考线(NHRL)上方,大别地区碰撞后镁铁质岩和北大别片麻岩具有一致的Pb同位素组成。在(N(208Pb)/N(204Pb))i(N(206Pb)/N(204Pb))i图解[图7(b)]中,宿松地体脉岩表现出类似特征。
4讨论
4.1地壳混染和成因
基性脉岩被认为是拉张背景下幔源岩浆活动的产物,岩浆在上升侵位或岩浆房中,通常会受到一定程度的地壳混染作用影响[3750]。宿松地体中—基性脉岩样品主量元素和微量元素组成具有较大的变化范围(表2),偏镁铁质样品具有较低的SiO2[KG-30x]含量(最低为4845%),较高的MgO含量(最高为914%)、Ni[KG-20x]含量(最高为184×10-6)和Cr含量(最高为708×
碰撞后镁铁质岩数据引自文献[1]、[2]、[15]、[27]和[28];北大别片麻岩、扬子板块中生代基性岩数据引自文献[51]~[57];Pb同位素演化线数据引自文献[58]
图7初始Pb同位素组成图解
Fig.7Diagram of Initial Pb Isotopic Compositions
10-6),表明其来自于地幔源区;但这些中—基性脉岩同时表现出明显的地壳物质组成特征,如碱含量(w(Na2O)+w(K2O)值最高为812%)偏高,大离子亲石元素和轻稀土元素明显富集,NbTa等高场强元素亏损。另外,较高的全岩(N(87Sr)/N(86Sr))i值(0706 3~0710 9)和明显偏低的εNd(t)值(-227~-151)暗示着古老的地壳物质对这些中—基性脉岩的形成具有一定影响。地壳物质对幔源岩浆的作用一般有两种可能:一种是岩浆源区富集所致,即岩浆源区存在因俯冲或其他机制进入地幔的陆壳物质;另一种是岩浆上升过程中遭受了强烈的地壳物质混染[9]。宿松地体中—基性脉岩样品地球化学组成相对均一,尤其是微量元素蛛网图和稀土元素配分模式基本一致(图5),同位素组成也相对均一(图6、7),说明岩浆在上升过程中地壳混染作用不大。具体来说,在微量元素组成上,Th、U相对La具有亏损特征,并且脉岩样品Rb、Th、U含量基本都小于上地壳(Rb含量为84×10-6,Th含量为10.5×10-6,U含量为27×10-6)[59],由此可认为中、上地壳的混染作用不明显[60]。另外,下地壳具有相对偏低的Ba和Sr含量(分别为390×10-6和350×10-6) [61],但随着MgO含量的升高,脉岩样品Ba和Sr含量并没有表现出明显降低,并且相对于下地壳都具有偏高的Ba含量(高达3 604×10-6)和Sr含量(高达1 082×10-6)。在同位素特征上,随着地壳物质的混入,岩石SiO2含量增加,N(87Sr)/N(86Sr)值增高,εNd(t)值降低,而宿松地体中—基性脉岩样品在SiO2(N(87Sr)/N(86Sr))i图解[图8(a)]和SiO2εNd(t) 图解[图8(b)]上并没有显示明显相关关系,表明岩浆上升过程中地壳混染作用的影响不大。
t=130 Ma
图8SiO2(N(87Sr)/N(86Sr))(t)图解和SiO2εNd(t)图解
Fig.8Diagrams of SiO2(N(87Sr)/N(86Sr))(t) and SiO2εNd(t)
宿松地体岩石地球化学特征应是其地幔源区组成的反映,该地幔源区可能受到了俯冲或者拆沉等作用的影响而具有富集的特征。基性岩浆在上升过程中经历了一定程度以橄榄石和单斜辉石为主的分离结晶作用,而在La/SmLa图解[图9(a)]上,脉岩样品表现出明显的正相关关系,暗示宿松地体中—基性脉岩的成岩方式可能以部分熔融为主。大多数脉岩样品具有偏高的SiO2含量(4845%~6137%),表现出高镁埃达克质岩的特征,例如较低的Y含量((12~21)×10-6)、较高的Sr含量((617~1 082)×10-6)、偏高的w(Sr)/w(Y)值(3272~8483)以及相对较高的Mg#值(52~66)。
图9La/SmLa图解和(La/Yb)NYbN图解
Fig.9Diagrams of La/SmLa and (La/Yb)NYbN
非俯冲环境下的高镁埃达克质岩一般形成于加厚下地壳的拆沉及其与地幔的相互作用。实验岩石学结果显示,下伏地幔受到榴辉岩化下地壳拆沉的影响,部分熔融可产生安山质到玄武质熔体,并且这些熔体具有强烈的下地壳组成特征,而脉岩中偏基性样品表现出明显亏损地幔来源的特征,如较高的w(Nb)/w(Y)值、偏低的w(Sr)/w(Rb)值和w(Zr)/w(Rb)值,这可能是榴辉岩化下地壳拆沉过程中软流圈地幔发生减压部分熔融的结果[11]。因此,这些中—基性脉岩应该是拆沉下地壳熔体所交代富集地幔的部分熔融产物,熔融产生的熔体经历了一定程度的分离结晶。
4.2源区特征和富集过程
大别地区出露有大量晚中生代镁铁质—超镁铁质侵入体,无论是岩体还是脉岩,它们都呈现出同位素明显富集的特征[9]。其物质组成通常来自富集的地幔源区,但具体的富集过程还存在很多争议,主要有两种观点:①三叠纪时期扬子板块与华北板块碰撞过程中扬子板块的俯冲作用;②早白垩世时期俯冲碰撞后,加厚下地壳的拆沉作用。Jahn等认为早白垩世北大别地区镁铁质—超镁铁质岩石形成于三叠纪陆陆碰撞过程中深俯冲的大陆地壳所交代的地幔橄榄岩部分熔融[1]。Zhao等认为北大别地区的这些镁铁质—超镁铁质岩石是深俯冲的扬子板块岩石圈自身部分熔融所形成的[44]。Wang等认为北大别地区出露的基性脉岩源区应是被俯冲的扬子板块改造的华北岩石圈地幔[27]。但是,大量针对大别造山带超高压变质岩的研究发现,三叠纪华北板块和扬子板块俯冲、碰撞和折返过程非常迅速,俯冲板片在地幔中滞留时间较短,进而脱出的板片流体量相对有限,可能并不能交代大范围的地幔部分。另外,大别造山带鲜有同碰撞岩浆作用,三叠纪俯冲、碰撞过程中板片流体对上覆岩石圈的影响有限。而另一方面,Nelson等大量研究证实,造山带岩石圈拆沉与岩浆作用有着密切关系[6266],岩石圈拆沉作用可导致地壳抬升和下地壳大规模熔融。三叠纪扬子板块与华北板块的俯冲、碰撞造成大别造山带地壳加厚,但地球物理学资料表明现今大别造山带没有山根,因此,三叠纪以来可能发生过岩石圈拆沉,而拆沉的时间应该在早白垩世,几乎与大规模岩浆活动同时[8]。Wang等提出大别造山带富集的地幔源区应与榴辉岩化的下地壳拆沉作用相关[38,41],而大别造山带东部大量分布的高镁埃达克质岩为这一观点提供了更多证据。
宿松地体中—基性脉岩除了样品SS1404和SS1405(可能受到地壳混染影响)外,SrNdPb同位素组成比较集中,与大别地区碰撞后镁铁质岩石[12,15,2728]基本一致,都落入北大别片麻岩的组成范围(图6、7),而北大别通常被认为是华南大陆岩石圈地幔北缘[48]或者俯冲华南陆壳的中下地壳[4950]。针对这些脉岩样品开展锆石年代学工作,发现其中存在大量年老的继承性锆石[25],年龄组成与扬子板块记录的典型构造岩浆事件具有对应关系,说明宿松地体具有扬子板块属性的同时,中—基性脉岩的源区含有大量陆壳物质。另外,这些脉岩样品具有较高的Sr含量和相对较低的Y、Yb含量,亏损重稀土元素且Eu负异常不明显,具有偏中性的SiO2含量和较高的Al2O3含量,Mg#值相对偏高,这和明显的高镁埃达克质岩组成特征相似[图9(b)、表2],暗示其源区应该有加厚下地壳物质的混入。综合这些中—基性脉岩中强烈的加厚地壳特征和偏高的MgO、Cr、Ni含量等,笔者认为它们应该是造山带增厚的岩石圈地幔和下地壳拆沉后,在软流圈烘烤下发生部分熔融,并于130 Ma左右上升侵位形成的。当然,在此过程中软流圈的亏损物质是否参与其中,以及中—基性脉岩与大别地区其他碰撞后岩浆岩的相互关系等问题还需要进一步研究和探讨。
5结语
(1)大别造山带宿松地体早白垩世中—基性脉岩主要具有安粗岩的性质。主量元素含量变化较大,SiO2含量介于4845%~6137%,Mg#值相对较高,基性端元具有偏高的MgO、Cr、Ni含量,指示其幔源特征。脉岩样品原始地幔标准化微量元素蛛网图和球粒陨石标准化稀土元素配分模式均一,大离子亲石元素和轻稀土元素相对富集,重稀土元素和高场强元素亏损,指示其具有岛弧型特征。中—基性脉岩的形成主要是地幔源区部分熔融的结果,原始岩浆在上升过程中没有受到明显的地壳混染,在岩浆演化早期曾经历了一定程度分离结晶作用。
(2)宿松地体中—基性脉岩SrNdPb同位素组成相对富集,源区中扬子板块下地壳物质的贡献显著。脉岩整体具有高Sr含量和低Y、Yb含量,与高镁埃达克质岩组成类似,其形成是增厚的造山带岩石圈拆沉并与地幔相互作用的结果。
中国科学技术大学侯振辉和肖平在分析测试中提供了帮助,在此一并致谢。
参考文献:
References:
[1]JAHN B M,WU F Y,LO C H,et al.Crustmantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and SrNd Isotopic Evidence from Postcollisional Maficultramafic Intrusions of the Northern Dabie Complex,Central China[J].Chemical Geology,1999,157(1/2):119146.
[2]李曙光,聂永红,HART S R,等.俯冲陆壳与上地幔的相互作用:Ⅱ.大别山同碰撞镁铁—超镁铁岩的Sr,Nd同位素地球化学[J].中国科学:D辑,地球科学,1998,28(1):1822.
LI Shuguang,NIE Yonghong,HART S R,et al.Interaction Between Subducted Continental Crust and Upper Mantle:Ⅱ.Sr and Nd Isotopic Geochemistry of Syncollisional Maficultramafic Rocks of Dabie Orogen Belt[J].Science in China:Series D,Earth Sciences,1998,28(1):1822.
[3]李曙光,洪吉安,李惠民,等.大别山辉石岩辉长岩体的锆石UPb年龄及其地质意义[J].高校地质学报,1999,5(3):351355.
LI Shuguang,HONG Jian,LI Huimin,et al.UPb Zircon Ages of the Pyroxenitegabbro Intrusions in Dabie Mountains and Their Geological Implications[J].Geological Journal of China Universities,1999,5(3):351355.
[4]陈道公,汪相,DELOULE E,等.北大别辉石岩成因:锆石微区年龄和化学组成[J].科学通报,2001,46(7):586590.
CHEN Daogong,WANG Xiang,DELOULE E,et al.Zircon SIMS Ages and Chemical Composition from Northern Dabie Terrain:Its Implication for Pyroxenite Genesis[J].Chinese Science Bulletin,2001,46(7):586590.
[5]赵子福,郑永飞,魏春生,等.大别山沙村和椒子岩基性—超基性岩锆石UPb定年、元素和碳氧同位素地球化学研究[J].高校地质学报,2003,9(2):139162.
ZHAO Zifu,ZHENG Yongfei,WEI Chunsheng,et al.Zircon UPb Age,Elemental and Isotope Geochemistry of Mesozoic Maficultramafic Rocks at Shacun and Jiaoziyan in North Dabie[J].Geological Journal of China Universities,2003,9(2):139162.
[6]谢智,郑永飞,闫峻,等.大别山沙村中生代A型花岗岩和基性岩的源区演化关系[J].岩石学报,2004,20(5):11751184.
XIE Zhi,ZHENG Yongfei,YAN Jun,et al.Source Evolution Relationship Between Atype Granites and Mafic Rocks from Shacun in Dabieshan[J].Acta Petrologica Sinica,2004,20(5):11751184.
[7]ZHAO Z F,ZHENG Y F,WEI C S,et al.Postcollisional Granitoids from the Dabie Orogen in China:Zircon UPb Age,Element and O Isotope Evidence for Recycling of Subduced Continental Crust[J].Lithos,2007,93(3/4):248272.
[8]李全忠,谢智,徐夕生,等.大别造山带早白垩世基性岩的同位素特征及下地壳物质对岩浆源区的贡献[J].岩石学报,2008,24(8):17711781.
LI Quanzhong,XIE Zhi,XU Xisheng,et al.The Isotopic Characteristics of the Early Cretaceous Mafic Rocks from Dabie Orogenic Belt and the Contribution of the Lower Crust to the Magma Source [J].Acta Petrologica Sinica,2008,24(8):17711781.
[9]王世明,马昌前,王琳燕,等.大别山早白垩世基性脉岩SHRIMP锆石UPb定年、地球化学特征及成因[J].地球科学,2010,35(4):572584.
WANG Shiming,MA Changqian,WANG Linyan,et al.SHRIMP Zircon UPb Dating,Geochemistry and Genesis of Early Cretaceous Basic Dykes from the Dabie Orogen[J].Earth Science,2010,35(4):572584.
[10]XU H J,MA C Q,YE K.Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen,Eastern China:SHRIMP Zircon UPb Dating and Geochemistry[J].Chemical Geology,2007,240(3/4):238259.
[11]XU H J,MA C Q,SONG Y R,et al.Early Cretaceous Intermediatemafic Dykes in the Dabie Orogen,Eastern China:Petrogenesis and Implications for Crustmantle Interaction[J].Lithos,2012,154:8399.
[12]MA C Q,LI Z C,EHLERS C,et al.A Postcollisional Magmatic Plumbing System:Mesozoic Granitoid Plutons from the Dabieshan Highpressure and Ultrahighpressure Metamorphic Zone,Eastcentral China[J].Lithos,1998,45(1/2/3/4):431456.
[13]ZHENG Y F,ZHOU J B,WU Y B,et al.Lowgrade Metamorphic Rocks in the DabieSulu Orogenic Belt:A Passivemargin Accretionary Wedge Deformed During Continent Subduction[J].International Geology Review,2005,47(8):851871.
[14]石永红,王次松,康涛,等.安徽省宿松变质杂岩岩石学特征和锆石UPb年龄研究[J].岩石学报,2012,28(10):33893402.
SHI Yonghong,WANG Cisong,KANG Tao,et al.Petrological Characteristics and Zircon UPb Age for Susong Metamorphic Complex Rocks in Anhui Province[J].Acta Petrologica Sinica,2012,28(10):33893402.
[15]戴立群.秦岭—红安—大别造山带早白垩世碰撞后镁铁质火成岩地球化学研究[D].合肥:中国科学技术大学,2014.
DAI Liqun.A Geochemical Study of Early Cretaceous Postcollisional Mafic Igneous Rocks from the QinlingHonganDabie Orogens[D].Hefei:University of Science and Technology of China,2014.
[16]侯振辉,王晨香.电感耦合等离子体质谱法测定地质样品中35种微量元素[J].中国科学技术大学学报,2007,37(8):940944.
HOU Zhenhui,WANG Chenxiang.Determination of 35 Trace Elements in Geological Samples by Inductively Coupled Plasma Mass Spectrometry[J].Journal of University of Science and Technology of China,2007,37(8):940944.
[17]CHEN F,HEGNER E,TODT W.Zircon Ages and Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest,Germany:Evidence for a Cambrian Magmatic Arc[J].International Journal of Earth Sciences,2000,88(4):791802.
[18]CHEN F,SIEBEL W,SATIR M,et al.Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone[J].International Journal of Earth Sciences,2002,91(3):469481.
[19]CHEN F K,LI X H,WANG X L,et al.Zircon Ages and NdHf Isotopic Composition of the Yunnan Tethyan Belt,Southwestern China[J].International Journal of Earth Sciences,2007,96(6):11791194.
[20]LANGMUIR C H,BENDER J F,BENCE A E,et al.Petrogenesis of Basalts from the Famous Area:MidAtlantic Ridge[J].Earth and Planetary Science Letters,1977,36(1):133156.
[21]WINCHESTER J A,FLOYD P A.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements[J].Chemical Geology,1977,20:325343.
[22]QI Q,TAYLOR L A,ZHOU X.Petrology and Geochemistry of an Unusual Tridymitehercynite Xenolith in Tholeiite from Southeastern China[J].Mineralogy and Petrology,1994,50(4):195207.
[23]刘燊,胡瑞忠,赵军红,等.胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究[J].岩石学报,2005,21(3):947958.
LIU Shen,HU Ruizhong,ZHAO Junhong,et al.Geochemical Characteristics and Petrogenetic Investigation of the Late Mesozoic Lamprophyres of Jiaobei,Shandong Province[J].Acta Petrologica Sinica,2005,21(3):947958.
[24]SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Specical Publications,1989,42:313345.
[25]谢清陆,李双庆,方博文,等.大别造山带宿松地体中—基性脉岩锆石年龄及其地质意义[J].地球科学与环境学报,2016,38(3):318333.
XIE Qinglu,LI Shuangqing,FANG Bowen,et al.Zircon Ages and Geological Significances of Intermediatemafic Dykes in Susong Terrene of Dabie Orogenic Belt[J].Journal of Earth Sciences and Environment,2016,38(3):318333.
[26]谢清陆.大别造山带宿松地体中—基性脉岩的成因和演化:锆石UPb年代学和地球化学证据[D].合肥:中国科学技术大学,2016.
XIE Qinglu.Origin and Evolution of Mafic Dike Rocks in the Susong Orogenic Belt in the Dabie Orogenic Belt:Evidence from Zircon UPb Geochronology and Geochemistry[D].Hefei:University of Science and Technology of China,2016.
[27]WANG Y J,FAN W M,PENG T P,et al.Nature of the Mesozoic Lithospheric Mantle and Tectonic Decoupling Beneath the Dabie Orogen,Central China:Evidence from 40Ar/39Ar Geochronology,Elemental and SrNdPb Isotopic Compositions of Early Cretaceous Mafic Igneous Rocks[J].Chemical Geology,2005,220(3/4):165189.
[28]CHEN J F,JAHN B M.Crustal Evolution of Southeastern China:Nd and Sr Isotopic Evidence[J].Tectonophysics,1998,284:101133.
[29]JAHN B M.Geochemical and Isotopic Characteristics of UHP Eclogites and Ultramafic Rocks of the Dabie Orogen:Implications for Continental Subduction and Collisional Tectonics[M]∥HACKER B R,LIOU J G.When Continents Collide:Geodynamics and Geochemis Try of Ultrahighpressure Rocks.Dordrecht:Kluwer Academic Publishers,1998:203239.
[30]杨祝良,沈渭洲,陶奎元,等.浙闽沿海早白垩世玄武岩锶、钕、铅同位素特征:古老富集型地幔的证据[J].地质科学,1999,34(1):5968.
YANG Zhuliang,SHEN Weizhou,TAO Kuiyuan,et al.Sr,Nd and Pb Isotopic Characteristics of Early Cretaceous Basaltic Rocks from the Coast of Zhejiang and Fujian:Evidences for Ancient Enriched Mantle Source[J].Scientia Geologica Sinica,1999,34(1):5968.
[31]廖群安,王京名,薛重生,等.江西广丰白垩系盆地中两类玄武岩的特征及其与盆地演化的关系[J].岩石学报,1999,15(1):116123.
LIAO Qunan,WANG Jingming,XUE Chongsheng,et al.The Characteristics of Two Kinds Basalts in Cretaceous Basin and Their Relations with the Basins Evolution in Guangfeng District,Jiangxi Province[J].Acta Petrologica Sinica,1999,15(1):116123.
[32]徐夕生,周新民,OREILLY S Y,等.中国东南部下地壳物质与花岗岩成因探索[J].岩石学报,1999,15(2):217223.
XU Xisheng,ZHOU Xinmin,OREILLY S Y,et al.Exploration for the Lower Crustal Materials and Granite Genesis in Southeast China[J].Acta Petrologica Sinica,1999,15(2):217223.
[33]郑祥身,金成伟,翟明国,等.北大别灰色片麻岩原岩性质的探讨:SmNd同位素年龄及同位素成分特点[J].岩石学报,2000,16(2):194198.
ZHENG Xiangshen,JIN Chengwei,ZHAI Mingguo,et al.Approach to the Source of the Gray Gneisses in North Dabie Terrain:SmNd Isochron Age and Isotope Composition[J].Acta Petrologica Sinica,2000,16(2):194198.
[34]CHEN J F,YAN J,XIE Z,et al.Nd and Sr Isotopic Compositions of Igneous Rocks from the Lower Yangtze Region in Eastern China:Constraints on Sources[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,2001,26(9/10):719731.
[35]郭新生,陈江峰,张巽,等.桂东南富钾岩浆杂岩的Nd同位素组成:华南中生代地幔物质上涌事件[J].岩石学报,2001,17(1):1927.
GUO Xinsheng,CHEN Jiangfeng,ZHANG Xun,et al.Nd Isotopic Ratios of Kenriched Magmatic Complexes from Southeastern Guangxi Province:Implications for Upwelling of the Mantle in Southeastern China During the Mesozoic[J].Acta Petrologica Sinica,2001,17(1):1927.
[36]李献华,周汉文,刘颖,等.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅱ.微量元素和SrNd同位素地球化学[J].地球化学,2001,30(1):5765.
LI Xianhua,ZHOU Hanwen,LIU Ying,et al.Mesozoic Shoshonitic Intrusives in the Yangchun Basin,Western Guangdong and Their Tectonic Significance:Ⅱ.Trace Elements and SrNd Isotopes[J].Geochimica,2001,30(1):5765.
[37]HE Y S,LI S G,HOEFS J,et al.Postcollisional Granitoids from the Dabie Orogen:New Evidence for Partial Melting of a Thickened Continental Crust[J].Geochimica et Cosmochimica Acta,2011,75(13):38153838.
[38]WANG Q,WYMAN D A,XU J F,et al.Early Cretaceous Adakitic Granites in the Northern Dabie Complex,Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust[J].Geochimica et Cosmochimica Acta,2007,71(10):26092636.
[39]XU H J,MA C Q,YE K.Early Cretaceous Granitoids and Their Implications for Collapse of the Dabie Orogen,Eastern China:SHRIMP Zircon UPb Dating and Geochemistry[J].Chemical Geology,2007,240(3/4):238259.
[40]XU H J,MA C Q,ZHANG J F,et al.Early Cretaceous LowMg Adakitic Granites from the Dabie Orogen,Eastern China:Petrogenesis and Implications for Destruction of the Overthickened Lower Continental Crust[J].Gondwana Research,2013,23(1):190207.
[41]HUANG F,LI S G,DONG F,et al.Recycling of Deeply Subducted Continental Crust in the Dabie Mountains,Central China[J].Lithos,2007,96(1/2):151169.
[42]XU H J,MA C Q,ZHANG J F.Generation of Early Cretaceous HighMg Adakitic Host and Enclaves by Magma Mixing,Dabie Orogen,Eastern China[J].Lithos,2012,142/143:182200.
[43]ZHANG C,MA C Q,HOLTZ F.Origin of HighMg Adakitic Magmatic Enclaves from the Meichuan Pluton,Southern Dabie Orogen (Central China):Implications for Delamination of the Lower Continental Crust and Meltmantle Interation[J].Lithos,2010,119(3/4):467484.
[44]ZHAO Z F,ZHENG Y F,WEI C S,et al.Zircon UPb Age,Element and CO Isotope Geochemistry of Postcollisional Maficultramafic Rocks from the Dabie Orogen in Eastcentral China[J].Lithos,2005,83(1/2):128.
[45]THANG H Y,ZHENG J P,YU C M.Age and Composition of the Rushan Intrusive Complex in the Northern Sulu Orogeny,Eastern China:Petrogenesis and Lithospheric Mantle Evolution[J].Geological Magazine,2009,146(2):199215.
[46]GUO F,FAN W M,WANG Y J,et al.Origin of Early Cretaceous Calcalkaline Lamprophyres from the Sulu Orogeny in Eastern China:Implications for Enrichment Processes Beneath Continental Collisional Belt[J].Lithos,2004,78:291305.
[47]LIU S,HU R,GAO S,et al.UPb Zircon Age,Geochemical and SrNdPbHf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt,Eastern China[J].Lithos,2008,106:365379.
[48]赵子福,郑永飞.俯冲大陆岩石圈重熔:大别—苏鲁造山带中生代岩浆岩成因[J].中国科学:D辑,地球科学,2009,39(7):888909.
ZHAO Zifu,ZHENG Yongfei.Remelting of Subducted Continental Lithosphere:Petrogenesis of Mesozoic Magmatic Rocks in the DabieSulu Orogenic Belt[J].Science in China:Series D,Earth Sciences,2009,39(7):888909.
[49]刘贻灿,李曙光.俯冲陆壳内部的拆离和超高压岩石的多板片差异折返:以大别—苏鲁造山带为例[J].科学通报,2008,53(18):21532165.
LIU Yican,LI Shuguang.Detachment Within Subducted Continental Crust and Multislice Successive Exhumation of Ultrahighpressure Metamorphic Rocks:Evidence from the DabieSulu Orogenic Belt[J].Chinese Science Bulletin,2008,53(18):21532165.
[50]ZHAO Z F,ZHENG Y F,WEI C S,et al.Zircon UPb Ages,Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahighpressure Dabie Orogen in China[J].Chemical Geology,2008,253(3/4):222242.
[51]ZHANG H F,GAO S,ZHONG Z Q,et al.Geochemical and SrNdPb Isotopic Compositions of Cretaceous Granitoids:Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahighpressure Metamorphic Belt,China[J].Chemical Geology,2002,186(3/4):281299.
[52]YANG J H,CHUNG S L,ZHAI M G,et al.Geochemical and SrNdPb Isotopic Compositions of Mafic Dikes from the Jiaodong Peninsula,China:Evidence for Veinplusperidotite Melting in the Lithospheric Mantle[J].Lithos,2004,73(3/4):145160.
[53]ZHANG H F,SUN M.Geochemistry of Mesozoic Basalts and Mafic Dikes,Southeastern North China Craton,and Tectonic Implications[J].International Geology Review,2002,44(4):370382.
[54]ZHANG H F,SUN M,ZHOU X H,et al.Mesozoic Lithosphere Destruction Beneath the North China Craton:Evidence from Major,Traceelement and SrNdPb Isotope Studies of Fangcheng Basalts[J].Contributions to Mineralogy and Petrology,2002,144(2):241254.
[55]张理刚.东亚岩石圈块体地质[M].北京:科学出版社,1995.
ZHANG Ligang.Block Geology of Asian lithosphere[M].Beijing:Science Press,1995.
[56]闫峻,陈江峰,喻钢,等.长江中下游晚中生代基性岩的铅同位素特征:富集地幔的证据[J].高校地质学报,2003,9(2):195206.
YAN Jun,CHEN Jiangfeng,YU Gang,et al.Pb Isotopic Characteristics of Late Mesozoic Mafic Rocks from the Lower Yangtze Region:Evidence for Enriched Mantle[J].Geological Journal of China Universities,2003,9(2):195206.
[57]LI S G,WANG C X,DONG F,et al.Common Pb of UHP Metamorphic Rocks from the CCSD Project (1005 000 m) Suggesting Decoupling Between the Slices Within Subducting Continental Crust and Multiple Thin Slab Exhumation[J].Tectonophysics,2009,475(2):308317.
[58]ZARTMAN R E,DOE B R.Plumbotectonic:The Model[J].Tectonophysics,1981,75(1/2):135162.
[59]RUDNICK R L,GAO S.Composition of the Continental Crust[J].Treatise on Geochemistry,2003,3:164.
[60]TAYLOR S R,MCLENNAN S M.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell Scientific Publications,1985.
[61]RUDNICK R L.Making Continental Crust[J].Nature,1995,378:571578.
[62]NELSON K D.Are Crustal Thickness Variations in Old Mountain Belts Like the Appalachians a Consequence of Lithospheric Delamination?[J].Geology,1992,20(6):498502.
[63]SACKS P E,SECOR JR D T.Delamination in Collisional Orogens[J].Geology,1990,18(10):9991002.
[64]KAY R W,KAY S M.Delamination and Delamination Magmatism[J].Tectonophysics,1993,219(1/2/3):177189.
[65]高山,张本仁,金振民,等.秦岭—大别造山带下地壳拆沉作用[J].中国科学:D辑,地球科学,1999,29(6):532541.
GAO Shan,ZHANG Benren,JIN Zhenmin,et al.Lower Crustal Delamination in the QinlingDabie Orogenic Belt[J].Science in China:Series D,Earth Sciences,1999,29(6):532541.
[66]李超,陈衍景.东秦岭—大别地区中生代岩石圈拆沉的岩石学证据评述[J].北京大学学报:自然科学版,2002,38(3):431441.
LI Chao,CHEN Yanjing.A Review on Petrologic Evidences for Mesozoic Lithosphere Delamination in East QinlingDabie Mountains[J].Acta Scicentiarum Naturalium Universities Pekinensis,2002,38(3):431441.